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ABSTRACT

Main memory system design is facing increasingly high pressure from the advances of com-

putation power scaling. Nowadays memory systems are expected to have much higher capacity

than before. However, DRAM devices have limited scalability. Higher capacity usually trans-

lates to proportional hardware cost and power consumption. Memory compression is a promis-

ing technology to contain those increases. Previous memory compression works are generally

based on rigid data layout which limits their performance. We thus propose Flexible Memory

which supports out-of-order memory block layout to lower compression-related overhead and

improve performance.

Besides, the cost of memory reliability also increases with capacity growth. Conventional

error protection schemes utilizes Hamming-based SECDED code that comes with 12.5% capac-

ity and power overhead of entire memory system. However, it may not be necessary to protect

a whole memory system because some data may not be critical or sensitive to memory errors.

Memory capacity and power used in protecting those data are almost wasted. Therefore, Se-

lective Error Protection (SEP) can be used to lower the cost and power of large scale memory

protection. The method to select critical data and non-critical data has been proposed before,

however a memory system design to support its partitioned memory is challenging and does

not exist at that time. Therefore, we propose a memory system design that has the capability

to maintain two or more partitions with different layout in main memory at the same time.

This design makes SEP schemes a complete practical design.

Even with selective error protection, supporting memory reliability is still hurting the scale

of memory capacity. Fortunately, memory data has been proved to be very compressible. Most

common applications are expected to free up enough space that can be used to store their

own ECC code. For these applications, memory reliability incurs very low space and power

overhead. However, combining ECC and memory compression is not trivial. It is difficult
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to achieve high percentage of coverage over entire memory when compressibility of different

memory blocks varies a lot. We thus introduce Flexible ECC that is based on Flexible Memory

to allow easier ECC code placement. When a block has more choices to store its ECC code, it

is more likely to be covered by ECC. With Flexible ECC, a larger portion of memory can be

covered by ECC codes whose storage overhead is lowered by memory compression.
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CHAPTER 1. INTRODUCTION

Being straightforward, simple and effective, DRAM-based Traditional Memory Design has

long been de facto standard for main memory system. During the time in whih the speed gap

between processor and memory device was narrow enough, traditional memory was capable

of handling demand of memory throughput. However, computation power of microprocessors

roars, bringing much heavier load on memory traffic and raising the bar of required memory

performance [61] such that DRAM-based memory struggles to meet. Memory systems are

stressed in many cases. Traditional memory design is starting to hit its limits in terms of

capacity, bandwidth, power efficiency and reliability. In fact, the performance of memory

system has become limiting factor in many computing systems.

One of the most prominent demands toward a memory system is about providing large

capacity. Today’s applications store more data in memory than ever. Reasons behind this

phenomenon include richer features and higher quality service of these applications.

We can take commonly seen email client as an example. Email client used to be very

lightweight command-line based application, with only simple features like receiving and send-

ing plain emails. However, today’s local (not including web-based) email clients have more

features than those. Many of them manages user’s contacts, support rich format in email con-

tent, provide embedded email search engine and so on. The same trend can be seen in many

other applications as well. The working data set of today’s applications are increasingly larger.

This time we can take video player as an example. Limited by many factors, including network

speed, screen resolution, etc., the resolution of videos used to be low, like 800 x 600. However,

when display technology improves and network speed dramatically rises, it is common for a

video to be in 3840 x 2160, or so called 4K UHD resolution, which contains 17.28 times as

many pixels as 800 x 600 does. Other than applications requiring more capacity because of
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their nature, it is a common for a programmer to use more memory to improve algorithm

performance. Such technique could speed up programs by a few order of magnitudes.

If capacity demand can not be met by main memory, widely employed Virtual Memory

scheme [12] has to swap data in and out between main memory and main storage (usually

hard disks) in order to create the illusion of large memory space and prevent these demanding

application from failing due to insufficient memory. However, access speed of main storages

are several orders of magnitude lower than main memory, making each swap a considerable

performance burden.

Not only do computing systems keep more data in memory, they also require significant

higher memory bandwidth. Memory bandwidth is defined as number of data bytes a

memory system can deliver in certain amount of time. Without enough memory bandwidth,

processors would starve for lack of data and stall until its requested data is served. As multi-

core systems become common, more programs and threads are running simultaneously in a

single computer. Even if each program manages to keep bandwidth requirement stable, the

overall pressure on memory system would still be higher than before. In reality, many programs

are increasing their bandwidth demand, like video players described above, which also increases

bandwidth requirement by a considerable amount.

DRAM-based memory system improves its own bandwidth via increasing working frequency

of its data bus and utilizing DDR (Double Data Rate) technology to transfer two trunks of data

instead of one in a single cycle. Data bus clock frequency has been increased from 400MHz to

1066MHz during the past years. However, further dramatically improving working frequency

in impractical because of physical limits.

If we call energy as the currency a computing system uses to ”buy” more performance,

energy is the price. A system must have great energy efficiency so that running same

workload costs less when compared to a system with poorer energy efficiency. This price is

explicitly reflected in both energy bill and heat emission. The performance of smaller personal

devices, like smartphones and tablets, is greatly constrained by their battery life. Unfortunately,

as the most popular technology that most main memory systems are based on, DRAM, as its

name implies, relies on constantly refreshing its data cells to retain data with a short interval.
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Simply keeping data in DRAM already costs a considerable amount of power. When memory

capacity increases, the situation would only get worse. For larger-scale computers, energy

efficiency is an even more serious problem than battery life. Back in 2006, data centers in

US are reported to consume 1.5% of total US power [14]. In 2013, those data centers in U.S.

alone are reported to consume an estimate of 91 billion kilowatt-hours of electricity. It is also

projected that by the time of 2020, electricity consumption may go up to 140 billion kilowatt-

hours, incurring about $13 billion per year monetary cost. Therefore, it is critical to reduce

energy consumption of data centers. Memory system takes a considerable percentage in above

numbers. It has been reported that on IBM eServer, main memory alone consumes as much as

40% [35] of the total system energy.

A DRAM model with perfect reliability would be able to keep its data intact over time

without error until the data is overwritten. And many programs are built upon this ideal

model assumption. However, this model is not necessarily accurate. Like any other logical

circuit, DRAM-based main memory is also vulnerable to logic errors. Because of this, DRAM

error can cause serious consequences. Memory errors can easily cause operating system or

individual program crashing or Silent Data Corruption [15], which is even worse than crashing

in many cases because it causes wrong data to commit and keep propagating without even being

noticed. Previously, memory errors are considered as rare events caused by random events like

high energy particle collision or electrical fluctuations. However, recent studies [52, 22] show

otherwise. They reported a memory error rate of 25,000∼70,000 FIT (Failures In a billion-hour

operating Time) per Mbit of capacity. This is equivalent to around 1.5 DRAM errors in a 8

GB DRAM module. With such high error rate, it is hard to trust its output without proper

protection.

1.1 Challenges and Proposed Solutions

The most important challenge a memory system faces is increasing capacity, bandwidth and

improve reliability without causing significant overhead in terms of storage and power efficiency.

First of all, we would like to meet high reliability requirement while keeping energy consump-

tion caused by reliability improvement mechanisms. ECC (Error Correction Code) memory is
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usually used for this purpose. A challenge in using and enhancing memory error protection,

however, is to control the storage and energy overheads. The (72, 64) ECC scheme commonly

used in ECC memory incurs a storage overhead of 12.5% and about the same ratio of memory

energy overhead. Using stronger ECC may enhance error protection but may also increase the

overheads. One approach to reducing the overhead of existing and future memory error protec-

tion is to use a SEP (Selective Error Protection) framework [38]. In that framework, the system

provides a protected memory region and a non-protected memory region. Only the protected

region uses ECC. The OS and compiler place selected memory data in the protected region by

certain criteria, e.g. those of high access frequency as reported by a profiling tool. Application

programmers may also provide input. Some data, e.g. the data used by audio, image and video

processing, are insensitive to memory errors and thus can be put in the non-protected region

so that overhead can be reduced.

An important issue in SEP is how to support two separate memory regions in memory

system design. The previous work [38], which focuses on the SEP high-level framework, simply

assumes to have the support. A straightforward but näıve design is to use two sets of memory

channels and modules, one for ECC and one for non-ECC memory, and integrate them into

a single physical memory address space. Such a design is not only costly but also inflexible:

The size ratio of the protected and non-protected regions cannot be adjusted during runtime.

Performance overhead and energy consumption may also increase because of the separation.

It would defeat the purpose of SEP, i.e. to reduce the storage overhead and improve energy

efficiency.

Thus, we propose an efficient memory system design to support a memory SEP system in

Chapter 3. It is based on previously proposed Embedded ECC [67, 8]. Embedded ECC enables

ECC protection on non-ECC memory. The ECC bits of an ECC word are embedded in the

same DRAM rows (pages) with the data bits of the word. Such a storage layout minimizes the

energy overhead from accessing the ECC bits, because no extra bank pre-charge or activation

is needed. The complexity of embedded ECC is on memory address mapping, because now

a DRAM row holds data and ECC bits for a non-power-of-two number of memory blocks (of

cache block size). For example, if a DRAM page previously holds the data bits for 128 memory
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blocks, it will hold data and ECC bits for only memory 112 blocks, assuming a conventional

(72, 64) coding scheme with a 12.5% ECC storage overhead. Embedded ECC uses a Biased

Chinese Reminder Mapping (BCRM) scheme, which uses efficient modulo operation to replace

Euclidean division in the address mapping.

Second, increasing memory capacity is not as straightforward as in small-scale computers.

DRAM, as the most commonly used main memory technology, is hitting its limits in scalability.

It has become harder and harder to shrink DRAM cell size. Without downsizing its cells,

adding more capacity would translate to linear increase in power consumption. And not only

does it cost energy to read and write data from and to DRAM, simply keeping more data

intact is already a high price to pay. This is because DRAM, as its name implies, relies on

constantly refreshing its data cells to retain data with a short interval. Block-level hardware

memory compression is promising to increase the effective memory capacity and bandwidth,

as it reduces memory footprint and memory traffic [13, 48, 49]. It is unlike earlier hardware

memory compression (e.g. MXT [57, 1, 58]) or OS-based compression, which increases memory

traffic and therefore not suitable for memory-intensive multi-core applications. The approach

only requires proper OS support and is transparent to application software.

The compressed memory approach also has its own challenges to overcome. First, address

mapping from main memory address to memory device address is much more complicated.

Conventional simple address mapping, which relies on uniform memory block size and simple,

sequential layout, may not work in compressed memory. Second, there is a new scenario called

fat write [33], which refers to the type of write that triggers storage expansion in compressed

memory. When it happens, non-trivial operations are needed to make enough room for the new

data. Such operation can be very costly as they may involve movements of multiple memory

blocks. A mechanism has to be put in place to minimize number of fat writes and/or reduce

overhead of each fat-write.

Therefore, we present Flexible Memory in Chapter 4, a new design of block-level hardware

memory compression. Any memory compression scheme will complicate the layout of memory

contents in the physical memory storage. While decompression latency can be minimized using

recently proposed, fast decompression methods, locating the compressed block may potentially
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incur high overhead to memory access latency. To help address this issue, our design uses a

unique data structure called BMT (Block Mapping Table) and a set of supporting components

in the memory controller. A BMT holds the location information of all memory blocks belonging

to an OS page. The BMT structure is so designed that a single access to BMT is sufficient

to locate any memory block in a page, and it is compact enough such that a BMT can be

fetched into the memory controller easily. The memory controller embeds a small BMT cache

to facilitate BMT access, which has high hit rate for the workloads we evaluated. Coupled with

recently proposed, high-speed high-throughput Base-Delta-Immediate (BDI) compression [50]

and Frequent-Pattern Compression (FPC) [4], the use of BMT and BMT cache eliminates the

majority of time overhead in accessing a compressed memory block. Furthermore, the design

optimizes the page-level organization to reduce page expansion from fat writes. Our evaluation

shows that, on average, the design yields 1.5x improvement of memory capacity, 14% power

saving, and 7.5% performance improvement in weighted IPC speedup.

We also find that memory compression can be a good match with memory protection

schemes. Memory compression could provide free space to stored ECC, such that storage and

energy cost to maintain ECC code in memory would be lower or even free. There have been

some research works [54, 43, 31] that leverage the combination of compression and ECC to

provide low-cost ECC protection. However, these works focus more on utilizing simple and

effective memory layout to avoid compression overhead and optimizing either ECC coding or

compression algorithm to improve protection coverage provided by compression. However, they

miss the opportunity to utilize free space scattered in entire memory space because of having

a rigid memory layout.

Therefore, Chapter 5 proposes Flexible ECC, a scheme that combines error protection

with memory compression based on Flexible Memory. The key idea behind Flexible ECC is

improving protection coverage by utilizing the flexibility provided by FM and provide flexible

block-level layout and page-level layout designed to accommodate as many ECC codes as

possible. This is a new direction on improving protection coverage and is fully compatible with

compression algorithms designed towards high coverage and various types of ECC code. In our

evaluation, Flexible ECC is able to greatly reduce number of compression exception compared
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to state-of-the-art. We also found that combining ECC and compression might cause ECC

weakening, if not handled well.

The rest of this dissertation is as follows: Chapter 2 gives an overview of memory system in

modern computers, including their base technology DRAM, hierarchy and basics for accessing

them. It also gives introduction to DRAM errors, related consequences and common ways

to mitigate them. Chapter 3 presents Memory System Design for SEP to make original SEP

complete and implementable. Chapter 4 gives design and implementation details of Flexible

Memory compression scheme. Chapter 5 proposes Flexible ECC design to utilize innovative

block and page-level structures to improve protection coverage in compressed and protected

memory. Lastly, Chapter 6 concludes the works included in this dissertation and points out

future research directions.
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CHAPTER 2. BACKGROUND

2.1 Memory System Overview

Memory system is a vital part in modern computing systems. It usually consists of cache,

main memory, main storage are shown as a pyramid in Figure 2.1. Higher components in the

pyramid is usually more costly per bit but order of magnitude faster than the component at

next lower level. Because of cost ratio, higher level components are a lot smaller compared to

lower level components.

When processors request data, including both read and write request, component on higher

level of the pyramid is accessed first. If data is not present there, next lower level is accessed

until processor finds requested data at certain level. Therefore, higher level component holds

more recent but smaller set of data and acts as cache to its next level.

Main memory stands between caches (L1, L2 or more levels) and main storage (hard-

disk, flash, etc.). Its position in memory hierarchy makes it especially important from system

performance’s point of view. Typically, main memory holds both code and data that programs

need to run. The source of these code and data can be lower level – main storage, like hard-drive

disks. It is notable that main storage usually poses significant latency and bandwidth limit

that it is order of magnitudes times slower than memory. For example, a DRAM access usually

takes 10-100 nanoseconds, however, a hard-disk access could be several milliseconds. Having

to access main storage for a program can mean great performance drop and ultimately cause

visible delay or uncomfortableness to end users. Main memory, as a much faster cache for main

storage takes the responsibility to prevent these cases from happening. Therefore, a good main

memory design, including its hardware devices and architectural choices is critical to system

performance. Another possible source of memory data is data generated or modified by the
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Figure 2.1: Memory hierarchy shown in a pyramid. Access speed is faster when going up the pyramid.
However, capacity becomes smaller for components higher up in the pyramid too. (Some components
like registers, are omitted as they are not involved in this study.

program during run time. This type of data sometimes is the only copy of valid data, which

can be critical to guarantee correctness or a program. This poses high reliability requirement

for main memory.

2.2 DRAM Technology

Dynamic RAM (DRAM) is the mainstream technology used to fabricate main memory

devices. A DRAM device is constructed by connecting a matrix of DRAM cells.

Structure of a DRAM cell is shown in Figure 2.2. It is so-called 1T1C structure, namely

one transistor and one capacitor. The transistor is used to switch on or off the access to

bit capacitor when voltage on word line and bit line changes. The capacitor stores electrical

charges, which is ultimately translated to a single bit binary value of either 0 or 1. Due to

volatility nature of capacitors, electrical charges in capacitors fade over time. Due to the need

to scale down DRAM cells, capacitor capacity is also reduced, making it easier to lose charge.

Therefore, DRAM requires constant refresh operation to restore lost electrical charges over

time. A refresh operation is essentially a coupled pair of read and write before information is

lost completely. This naturally occurs energy cost simply to keep data alive.

When reading data stored in DRAM cell, word line and bit line must be set to appropriate

voltage level to select a specific cell. Afterwards, charges in capacitor would flow to bit line,

causing a slight fluctuation to be picked up by a sensor connected to bit line. Similarly, writing

data is setting bit line voltage level to high or low in order to charge capacitor to desired voltage

level.
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Figure 2.2: Structure of a DRAM cell. Each DRAM cell consists of one transistor and one capacitor.

2.3 DRAM Error

Ideally DRAM would retain data accurately until it is overwritten or DRAM itself loses

power. In reality, DRAM can encounter errors at random, which compromises data integrity,

even when data is not being accessed at the time of error happening.

DRAM error has been studied for decades [28, 40, 5, 6, 64, 55, 41]. It is now a growing

concern as memory capacity and density scales. Recent studies on data-center computers have

reported 25,000∼70,000 FIT (Failures In a billion-hour operating Time) per Mbit of DRAM

systems [52], which means memory bit flips happen on daily basis. Another study [22] based

on IBM Blue Gene (BG) super-computers also reports high error rate; for example, 167,066

FIT on BG/P computers at the Argonne National Laboratory.

To better understand these numbers, we can take 25,000∼70,000 FIT per Mbit as an ex-

ample. On average, it can be translated to around 47,500 FIT per Mbit. Accordingly, if you

own a personal device, like laptop, with 8 GiB memory capacity encounters approximately 39

DRAM errors in a 24-hour operation period.

2.3.1 Consequence of DRAM Error

DRAM errors can cause various consequences for a computing system. As stated before,

DRAM holds run-time data for programs during execution. A DRAM error can cause instability

to all programs, causing program crash or OS crash. Besides, memory errors can lead to silent

data corruption [15], potentially causing wrong output from any program without noticing.
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Figure 2.3: Nine-device SECDED Protection Memory Structure. During a device access, each device
outputs eight bits. Out of nine devices, one delivers 8-bit ECC parity bits while other eight devices,
together, deliver 64-bit data bits. Their output combines to be one (72, 64) ECC word.

What is even worse is that, memory errors can be taken advantage of by an adversary and

exploited as a security vulnerability [17].

2.3.2 DRAM Error Protection

ECC memory conventionally uses Hamming [19] or Hsiao [21] based (72,64) SECDED

(Single-bit Error Correcting Double-bit Error Detecting) code. A rank of ECC memory may

use nine x8 [53] devices or eighteen x4 devices, with one x8 device or two x4 devices, respec-

tively, dedicated to ECC bits storage. Figure 2.3 shows an example of nine-device SECDED

protection memory. The notion of (72, 64) means symbol size is 72 bits, out of which, 64 bits

are data. The rest 8 bits are parity bits. The storage overhead is 12.5% and the energy over-

head is about the same. Chipkill Correct [11], used with x4 devices, further supports SDDC

(Single Device Data Correction) that detects and corrects any number of errors from a single

device. The storage overhead is 12.5% but the energy overhead is much higher. If in the future

stronger error protection will be used, the storage overhead may become higher. Most desktop

computers and mobile devices have not yet adopted any error protection because of the higher

cost. In a word, protection schemes incur considerable overhead [10, 18, 27] in terms of both

storage and energy consumption.

2.3.3 Variants of ECC Codes

SECDED is not only available in (72, 64) form. In fact, it can be designed according to

different application scenarios. Given m-bit of parity bits available for SECDED code, its

protection capability can be measured with maximum size of a symbol it can protect, namely
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Figure 2.4: x4 Chip-kill correct memory Structure with (144, 128) Reed-Solomon code. For a device
access, each device outputs 4 bit. Out of 36 devices, 32 of them deliver 128 data bits, while the rest 4
devices deliver 16 ECC parity bits. Together, they construct one (72, 64) ECC word.

n. Based on m, we can calculate n using formula shown below. According to this formula, we

can get following table to show strength of SECDED code with different number of parity bits

shown in Table 2.1.

n = 2(m−1) − (m− 1) (2.1)

Table 2.1: Maximum number of data bits that can be protected with different number of parity bits.

Parity Bits Maximum Data Bits

5 10

6 25

7 56

8 119

9 246

Besides variants of SECDED codes, there are stronger Error Correcting Codes than SECDED

that provides the ability to correct and/or detect higher bits error, which of course comes with

a higher cost in terms of parity bits. Another commonly seen code is Reed-Solomon (RS)

code [51]. Chipkill is usually designed with RS code. x4 Chipkill puts x4 on each device, yet

it still keeps ability to recover from single chip errors because of 4-bit symbol length RS code

used.

2.4 DRAM Organization and Sub-ranked Memory

A DRAM rank is a set of memory devices that share same memory address/command

bus and respond simultaneously to incoming commands [67, 60, 2, 3]. In DDR3 memory, a

rank may consist of eight x8 devices, sixteen x4 devices, or four x16 devices to form a 64-

bit data path. Sub-ranked memory design splits each memory rank into narrower sub-ranks,
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row column rank bank channel

row rank bank column channel

cacheline interleaving

page interleaving

physical address (0010110100100111011000)

block address (0010110100100111) block offset

bank index 00 01 10 11

0010110 10 101 0011

Banks populated in channel 1 rank 2

Figure 2.5: Representative memory address decomposition with cacheline- and page- interleaving
schemes in DRAM memory systems. With page-interleaving address mapping, an artificial physical
address “0010110100100111011000” is decomposed to row “0010110”, rank “10”, bank “01”, column
“0011” and channel “1” straightforwardly by splitting the sequence of binaries of the physical address.
The last six bits “011000” of physical address are block offset assuming block size is 64-byte.

reducing the number of devices in a sub-rank. This change significantly reduces memory energy

consumption, because fewer DRAM chips are involved in each memory access. For example,

with a full rank of eight x8 devices, eight devices are involved in a memory access. Using 32-bit

sub-ranking and 16-bit sub-ranking will reduce the number of involved devices to four and two,

respectively. Sub-ranking may increase the data transfer time in DRAM access latency, but

the increase is slight given the high bandwidth of today’s DDR3 memory. Sub-ranking does

not require any change of DRAM devices.

2.5 DRAM Address Mapping Basics

As shown in Figure 3.1, a DRAM device-level address mapping unit is required to map

physical memory addresses to a designated DRAM region for data locating. It decomposes

the physical address into multiple dimensions for locating the memory channel, rank, bank,

row and column for the given access. Generally, the size of each dimension is power-of-two,

which simplifies the address mapping between physical address and device address to simple bit

decomposition. Conventionally, there are two address interleaving schemes, namely cacheline-

and page- interleaving, and each has its variants. Figure 2.5 shows specific examples of those
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two interleaving schemes1 and the detailed address decomposition and layout for the page-

interleaving example.

2.6 DRAM Accessing Basics

Commodity DDRx memory systems can have multiple channels, with multiple DIMMs

(Dual Inline Memory Module) per channel, typically one or two ranks per DIMM, eight banks

per rank, and a large number of rows and columns per bank. A memory request may be com-

pleted by three major commands, namely pre-charge, activation and column access (read/write

operation). An activation command opens a DRAM row and pushes data from DRAM cells

to row buffer. Each bank has a row buffer, which can be viewed as a single-line cache for

DRAM data. The following column access command accesses the row buffer to fetch a block of

data, usually 64 bytes for DDR3 memory. A row buffer is generally large for modern memory

devices, and multiple column accesses can fetch data directly from same row buffer without

opening the row again. This is called row buffer hit and it thus shortens DRAM access latency.

Such a design is based on the presumption that there is available locality in the program and

it can be captured in DRAM device-level through a proper address translation. As all rows in

a bank share solely one row buffer, only one row can be opened in a bank at any given time. If

a memory request hits another row of the bank, it incurs a bank conflict and the opened row

needs to close first by pre-charge command before opening new row. Bank conflicts increase

memory access latency and reduce memory throughput.

There are two commonly used page policies: close-page and open-page. Close-page policy

attempts to pre-charge the opened row after column access so that incoming requests to other

rows can be served immediately. It targets to take advantage of memory access parallelism to

improve DRAM performance. Open-page policy, however, maintains a row open after column

access. It favors applications with high row buffer locality so that the following requests hit

the opened row and can be accessed without opening the row again. In general, open-page

policy is less energy efficient than close-page policy as it consumes more power to maintain a

row open. However, open-page policy can be more efficient for some applications as fewer row

1We use the mapping schemes discussed in a book [26] and our discussions can be extended to other variants.
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activations are required. These two policies are equally important in practice, our discussion

and evaluation will cover both policies.

A data block stored in multiple DRAM cells is addressed by decomposing physical address

to DRAM device level address. Generally, one of two major address mapping schemes is op-

tionally applied, namely cacheline-interleaving and page-interleaving. Cacheline-interleaving

evenly distributes memory requests to DRAM channel, DIMM, rank and bank for high serving

parallelism. While page-interleaving places nearby requests in the same DRAM row for locality.

Cacheline- and page- interleaving schemes generally cooperates close- and open- page policy, re-

spectively, to serve memory request efficiently. Close-page policy pre-charges an opened DRAM

row after a memory request while open-page policy maintains the row opened attempting serv-

ing other requests hitting this row. The properties of two address mapping schemes are equally

important in practice and they are opted dependent on real system requirements.

In commodity DDRx memory systems, cacheline-interleaving and page-interleaving address

decompositions are designed to work with close-page and open-page policies, respectively.

Cacheline-interleaving scheme distributes memory requests evenly among memory units for

a high parallelism while page-interleaving scheme clusters nearby requests on same page for

high row buffer locality. These two major properties are equally important in practice. We

therefore devise different address mapping schemes in SEP to exhibit these properties to favor

system requirements.
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CHAPTER 3. MEMORY SYSTEM SUPPORT FOR SELECTIVE

ERROR PROTECTION

Memory error protection is increasingly important as memory density and capacity continue

to scale. This paper presents a memory SEP (Selective Memory Protection) design that enables

SEP for commodity memory modules, with no change to the modules or memory devices.

Memory error protection is provided through Embedded ECC, a recently proposed, energy-

efficient ECC memory organization. The memory SEP design splits the physical memory

address space into two memory regions of adjustable sizes, one with error protection and one

without. With this support, the OS can adjust the size ratio of the protected region and

non-protected region based on the needs of applications. In this scheme, the mapping from a

physical memory address to memory device addresses is no longer power-of-two based. New

and efficient address mapping schemes based on the Chinese Remainder Mapping are proposed

to avoid the use of complex Euclidean division. The simulation results show that the memory

SEP design may retain memory performance and cut memory power increase, while providing

the ECC protection to commodity memory modules.

3.1 Introduction

Memory error protection is increasingly important as memory cell density and capacity

scales. ECC (Error Correction Code) memory is usually used for this purpose. A few recent

field studies on data center computers have reported that DRAM memory error rates are

surprisingly higher than previously reported [52, 22]. Furthermore, memory errors are shown

to have high correlation, which means simple memory error protection may not be as effective

as previously thought. A challenge in using and enhancing memory error protection, however,
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is to control the storage and energy overheads. The (72, 64) ECC scheme commonly used

in ECC memory incurs a storage overhead of 12.5% and about the same ratio of memory

energy overhead. Using stronger ECC may enhance error protection but may also increase the

overheads.

One approach to reducing the overhead of existing and future memory error protection

is to use a SEP (Selective Error Protection) framework [38]. In that framework, the system

provides a protected memory region and a non-protected memory region. Only the protected

region uses ECC. The OS and compiler place selected memory data in the protected region by

certain criteria, e.g. those of high access frequency as reported by a profiling tool. Application

programmers may also provide input. Some data, e.g. the data used by audio, image and video

processing, are generally insensitive to memory errors and thus can be put in the non-protected

region to reduce protection overhead.

An important issue in SEP is how to support two separate memory regions in memory

system design. The previous work [38], which focuses on the SEP high-level framework, simply

assumes to have the support. A straightforward but näıve design is to use two sets of memory

channels and modules, one for ECC and one for non-ECC memory, and integrate them into

a single physical memory address space. Such a design is not only costly but also inflexible:

The size ratio of the protected and non-protected regions cannot be adjusted during runtime.

Performance overhead and energy consumption may also increase because of the separation.

It would defeat the purpose of SEP, i.e. to reduce the storage overhead and improve energy

efficiency.

In this study, we propose an efficient memory SEP mechanism to support a memory SEP

system. It is based on previously proposed Embedded ECC [67, 8]. Embedded ECC enables

ECC protection on non-ECC memory. The ECC bits of an ECC word are embedded in the

same DRAM rows (pages) with the data bits of the word. Such a storage layout minimizes the

energy overhead from accessing the ECC bits, because no extra bank pre-charge or activation

is needed. The complexity of embedded ECC is on memory address mapping, because now

a DRAM row holds data and ECC bits for a non-power-of-two number of memory blocks (of

cache block size). For example, if a DRAM page previously holds the data bits for 128 memory
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blocks, it will hold data and ECC bits for only memory 112 blocks, assuming a conventional

(72, 64) coding scheme with a 12.5% ECC storage overhead. Embedded ECC uses a Biased

Chinese Reminder Mapping (BCRM) scheme, which uses efficient modulo operation to replace

Euclidean division in the address mapping.

The proposed SEP mechanism partitions DRAM rows using a new, extended version of

BCRM. The DRAM rows in the memory system are partitioned into two consecutive regions,

one without ECC and one with embedded ECC. The boundary of the two regions is adjustable

through the OS. The row-based partitioning makes SEP feasible for small and non-ECC memory

systems of one or two memory ranks, e.g. those in laptop, desktop, and mobile computers. The

SEP mechanism may also be revised for server memory systems, which use ECC memory or

Chipkill Correct [11] memory, but this paper does not explore it. This mechanism makes two

memory pools available to the OS, one with ECC protection and one without, and the sizes of

the two pools are adjustable. Combined with the previously proposed SEP framework, it will

enable a true SEP memory system.

Address mapping is a focus of this paper because the design has to use an extended version

of the BCRM. In the original BCRM, the modulo operation uses a fixed divisor of 7, for which

an efficient logic implementation is known. In the proposed SEP, the modulo operation of the

BCRM has to use the divisor as a parameter that changes with the size of protected region.

We call this new address mapping parameterized BCRM. We have carefully studied the logic

design of parameterized BCRM and have found an efficient solution. We also present a new

design called Segmented BCRM that further reduces the implementation complexity.

To summarize, we have made the following contributions in this paper:

• Based on Embedded ECC, we have designed a memory SEP mechanism that works on

non-ECC DRAM modules, which are commodity DRAM devices and do not require

higher-cost ECC DRAM modules.

• We use parameterized BCRM to implement the address mapping of the proposed SEP,

and give an efficient logic design of the parameterized BCRM. We further propose a more

efficient design called Segmented BCRM.
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• We have fully evaluated the impact of the SEP design on memory system performance

and power through simulation. The experimental results show that the SEP design

retains system performance, reduces power consumption and meanwhile enhances system

reliability.

The rest of this paper is organized as follows. Section 3.2 introduces the background and

related work of the study. Section 3.3 examines the existing SEP framework and shows the

design challenges. Section 3.4 presents the address mapping scheme to support SEP. Section 3.5

describes the experiment setup and Section 3.6 presents the simulation results. Finally, Sec-

tion 3.7 concludes the paper.

3.2 Background and Related Work

3.2.1 CRM Address Mapping

Existing state-of-the-art CRM-based mapping is introduced in E3CC based on Chinese

Remainder Theorem [16] for coprimed memory system. It is a mapping from a physical address

d ∈ [0, RC − 1] to a position in 2D array LR×C represented by following formula1:

r = d mod R, c = d mod C

, in which r and c are row and column indexes of the array and r ∈ [0, R − 1], c ∈ [0, C − 1].

Given that R and C are coprime, CRM is a one-to-one mapping such that every physical

address corresponds to one and only one position in the array.

CRM scheme is based on modulo operation only, which can be executed efficiently as shown

in a previous work [56]. Table 3.1 shows an example layout using CRM with 8 rows and 7

columns.

3.2.2 Related Work

Memory error protection has been widely studied [64, 65, 41, 38, 8, 31]. Virtualized

ECC [64, 65] proposes to maintain ECC in memory data space and relies on last level cache to

1The notations are different from those in paper [16].
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Table 3.1: An example layout of CRM with R = 8, C = 7. An address d is mapped to exactly one pair
of integer 〈r, c〉.

r/c 0 1 2 3 4 5 6

0 0 8 16 24 32 40 48
1 49 1 9 17 25 33 41
2 42 50 2 10 18 26 34
3 35 43 51 3 11 19 27
4 28 36 44 52 4 12 20
5 21 29 37 45 53 5 13
6 14 22 30 38 46 54 6
7 7 15 23 31 39 47 55

Table 3.2: An example layout of BCRM with R = 6, C = 8. GCD = 2, T = 3. Each cell maintains
n→ |2n : 2n+1|. n means the super-address mapping to super-column; 2n : 2n+1 are the corresponding
normal addresses mapping to normal columns.

r/t → c 0 → 0:1 1 → 2:3 2 → 4:5

0 0 → 0:1 16 → 32:33 8 → 16:17
1 9 → 18:19 1 → 2:3 17 → 34:35
2 18 → 36:37 10 → 20:21 2 → 4:5
3 3 → 6 :7 19 → 38:39 11 → 22:23
4 12 → 24:25 4 → 8 :9 20 → 40:41
5 21 → 42:43 13 → 26:27 5 → 10:11
6 6 → 12:13 22 → 44:45 14 → 28:29
7 15 → 30:31 7 → 14:15 23 → 46:47

cache unused ECC to reduce memory traffic. The design is flexible and efficient compared to

conventional ECC memory.

Frugal ECC [31] and COP [43] are two memory protection schemes based on compression.

However, they are deliberately different. COP [43] exploits the possibility to distinguish a

compressed ECC word from an uncompressed word without help of identifying flag. While,

Frugal ECC [31] focuses on designing compression algorithm to improve protection coverage of

compressed memory.

Archshield [41] proposes an architectural-level framework to protect fabrication faulty cells

caused by extreme scaling of DRAM. Embedded ECC was first discussed as a generic idea in

Mini-Rank [67] and later fully developed in E3CC [8]. All those studies apply error protection

to entire memory.

A recent study [38] proposes SEP for low-cost memory protection, which is closely related

to our work. The details have been discussed in Section 3.1. Other works [7, 34] also discuss

selective data protections. By comparison, this work focuses on device-level design issues,
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mainly memory address mapping to support SEP with dynamic protection, which has not

been fully studied before to the best of our knowledge.

This work is partially motivated by Embedded ECC, which stores ECC bits with data

bits in the same DRAM row. It is designed for narrow-ranked low-power DRAM memories

for both reliability and energy efficiency. It also works for full-rank non-ECC memory, which

is the context of this paper. Because of ECC embedding, the effective memory capacity is

no longer power-of-two. The authors therefore propose Biased Chinese Remainder Mapping

(BCRM) for efficient device-level memory address mapping without using division. BCRM is

used for the entire physical memory address space. This work faces a different problem, namely

how to partition the address space into two regions, each with efficient device-level memory

address mapping. The two regions coexist in the same memory system and the partitioning

boundary may shift to vary the sizes of two regions, so we proposed parameterized BCRM to

accommodate this change. BCRM can be viewed as a particular case of parameterized BCRM.

We also propose another scheme called Segmented-BCRM that further reduces the cost with a

non-continuous memory address space design.

3.3 Memory SEP Mechanism and Address Mapping

We first discuss the existing work on SEP (Selective Error Protection) framework and

then present our memory SEP mechanism and address mapping. Mehrara et al. [38] propose

Selective Error Protection (SEP) and show in detail that SEP is reasonable in balancing ECC

power overhead and reliability requirement. Their study explores OS policies to utilize the SEP

framework. Their work also presents a high-level structure to support SEP. In the structure,

the memory space is partitioned into two regions, one protected by ECC and the other not.

Memory traffic is routed to a region according to its sensitivity to memory errors. The memory

controller maintains the address boundary of the two regions in a register. If the address

of coming memory request is greater than the marked address, it is protected and its data

transmits via ECC circuitry for integrity check between memory controller and DRAM devices.

Otherwise, the ECC circuitry and logic is bypassed. Although their study outlines the SEP

framework, it lacks a specific solution of providing a memory SEP mechanism that supports
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Figure 3.1: An example row-index based partitioning for selective protection and data/ECC layout
inside an x32 mobile LPDDR3 DRAM device with 16k rows and 10k columns. The dark gray rows
across all banks are protected by ECC. D represents a generic data word-column and E represents a
generic ECC word-column. A word-column is eight bytes, or two regular DRAM device columns in
a row. Bi represents a 64-bit subblock of a memory data block. There are eight data word-column
followed by one ECC word-column in error protected region, assuming conventional (72,64) SECDED
is applied.

those two regions. This is exactly what we are focusing on in this study, in order to make SEP

framework a complete design.

3.3.1 Memory SEP Mechanism Based on Row Partitioning

A DDRx memory consists of a number of memory channels, DIMMs, ranks, and banks, with

a large number of rows and columns in each bank. Although the partitioning can be done by any

of those dimensions, row-based partitioning is the only practical solution for small-scale memory

systems. In row-based partitioning, the memory system is viewed as an array of consecutive

DRAM rows, and the partitioning is to split the array into two sub-arrays of consecutive rows.

We use the first sub-array as non-protected region and the second as the protected region; the

reverse is also a valid choice. Partitioning by channel, DIMM, rank, or bank cannot support

fine granularity of partitioning. Furthermore, it will limit memory access parallelism and thus

degrade memory performance and energy efficiency. The related performance evaluation is done

in Section 3.6.1. We have conducted experiments of bank-based partitioning in Section 3.6.1

and they show an average of 6.6% and 4.7% multi-core weighted IPC loss when reducing bank-

level parallelism by half for cacheline- and page-interleaving, respectively. Lastly, partitioning
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by column reduces row buffer locality, which could hurt system performance and does not have

obvious benefit over row-based partitioning. Therefore, row-based partitioning is used in this

design.

A general memory system consists of multiple DRAM channels. Multiple ranks can also

populate in each channel2. A Typical DRAM rank is formed of eight banks, which are two-

dimensional arrays of storage cells. All these dimensions, including channel, rank, bank, column

and row, are options for memory space partitioning. In SEP, we turn to row dimension for

partitioning for the following reasons. First, channel-, rank- or bank-based partitioning lack

flexibility as number of those units can be limited in a system. A mobile memory system may

merely have one channel or two ranks. Although in large-scale workstations or servers, there

may be enough channels or ranks to provide fine granularity, we make no assumptions about

memory configuration in this work.

Third, column-based partitioning is also inappropriate as it reduces effective row buffer size,

likely penalizing system performance.

Row-based partitioning avoids all these drawbacks and preserves available parallelism and

access locality. In all banks, higher-indexed rows are protected with ECC while lower-indexed

rows are exposed to errors without protection. As either region is evenly distributed to all

channels, ranks and banks, memory access parallelism is maintained.

3.3.2 Memory ECC Storage

The protected memory region in SEP requires ECC for data integrity checking and it thus

introduces the problem where and how to store its ECC bits. Conventional ECC design deploy-

ing extra DRAM device for ECC redundancy is obviously inappropriate for partial protection.

We adopt Embedded ECC [67, 8] to implement ECC protection for the protected region (called

ECC region thereafter). The layout of SEP is shown in Figure 3.1. A memory data block is

mapped to ECC or non-ECC region through an address comparator and two mapping units.

In the non-ECC region, each 512-bit data block takes eight word-columns (eight-byte each)

2DIMM index is count into rank index thereafter in our presentation as DIMM may not be applicable in
devices like smartphones.
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or equivalently sixteen device columns (four-byte each) in an x32 device. In the ECC region,

one 8-byte ECC chunk is placed in a column following every eight data columns, assuming the

conventional (72,64) SECDED is used. The last eight columns are leftover columns which are

not utilized in Embedded ECC. Fortunately it is only a small percentage of memory storage.

Its design is discussed in more detail in Section 3.4.

3.3.3 Address Mapping

As discussed in Section 2.5, conventional device-level address mapping is simple because

the sizes of all DRAM dimensions are power-of-two. However, in SEP, the number of rows and

columns of either region may be non-power-of-two due to partitioning and ECC embedding,

which complicates device-level address mapping. Note that the address mapping units must be

flexible for the OS to adjust the boundary of the two regions. Take the address decomposition

in Figure 2.5 as an example and assume there are only 11 columns instead of 16 in one region,

the physical address thus cannot be decomposed to column, bank, rank and row indexes by

splitting the address bits. Without an effective solution of address mapping, the SEP may not be

implementable. A straightforward solution is to use division operation in the mapping function,

as the quotient and remainder of integer division operation can be used as the row and column

indexes. However, division operation would introduce significant overhead in hardware cost and

memory access latency, as well as limit memory throughput. The latency of integer division

is significant in modern processors [8]; for example, the IDIV (Integer Division) instruction

takes 38 to 123 cycles for 64 bit unsigned integer in Intel IA-32 and x86-64 architectures [25].

Additionally, division operation is hard to pipeline and thus will limit memory throughput

unless multiple division units are used. The performance impact evaluation will be presented

in Section 3.6.

The BCRM scheme proposed in Embedded ECC [8] uses modulo operation to replace

division operation. The modulo operation in the BCRM scheme uses a fixed divisor of seven,

for which a fast logic implementation is known [56]. In general, if the divisor is fixed and is a

relative small number, then the modulo operation is known to have a fast logic implementation.

The scheme cannot be directly used in SEP, however, because the divisor would have to vary
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Figure 3.2: Address decomposition procedure. Mapping function used here is 2D, while other arrows
are simple bit decomposition.

as the boundary of the two memory regions shifts. We propose a Parameterized BCRM scheme

to solve the issue, and further propose a more efficient scheme called Segmented BCRM.

3.4 Parameterized BCRM

3.4.1 Mapping Reduction

The mapping problem in SEP is finding a fast and efficient method to map a physical

address to DRAM device address components, which requires a multi-dimensional mapping

function as shown in Formula 3.1.

(Chn,Rnk,Bnk,Row,Col) = map func(addrphy) (3.1)

To simplify the discussion, the rank index is a global identifier that contains the DIMM

index. For example, a memory system of two DIMMs and two ranks per DIMM is considered

to have four global ranks. As discussed, the row and column can be non-power-of-two because

of the partitioning and ECC embedding. The number of channels, ranks and banks are still

power-of-two. Therefore, we can reduce required mapping function from 5D mapping to 2D

mapping plus simple binary decomposition. Figure 3.2 shows how 2D mapping can be used to

complete DRAM address mapping. The left diagram in Figure 3.2 shows the address mapping

procedure of cacheline-interleaving using 2D mapping. After removing the six-bit offset (for 64-

byte data block size) from physical address, the remaining block address is first decomposed to

lower bits and the remaining upper bits. The lower bits cover rank, bank and channel indexes.
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The upper bits are then decomposed to row and column indexes using 2D mapping. The right

diagram of Figure 3.2 shows the procedure of address mapping for page-interleaving scheme.

Column indexes are lower bits after removing channel and block offset in a block address in

page-interleaving scheme. We can thus first apply 2D mapping to obtain column and global

row indexes. The global row indexes serve as a unique row identifier across all banks and ranks.

Then the last few bits of the global row indexes are split to rank and bank indexes. In a word,

we only need a 2D mapping function as in Formula 3.2 to achieve non-power-of-two memory

mapping.

(Row,Col) = 2D map func(addrphy) (3.2)

3.4.2 Existing CRM-based Address Mapping

BCRM (Biased CRM) is introduced in Enhanced Embedded ECC [8], while CRM mapping

is based on Chinese Remainder Theorem for prime memory system [16], more details can be

found in 3.2.1. CRM uses modulo operations to map a physical address d ∈ [0, RC − 1] to a

tuple 〈r, c〉 in a 2D array with R rows and C columns by the following formulas3:

r = d mod R, c = d mod C (3.3)

When R and C are coprime, CRM is a one-to-one mapping such that every physical address

corresponds to one and only one position in the array.

BCRM revises the formulas for embedded ECC with a modern DRAM system to resolve two

issues in CRM. First, CRM requires the number of rows and columns to be coprime. Second,

CRM breaks the row-level locality as continuous addresses are mapped to different rows, which

reduces row buffer hit ratio and degrades system performance. BCRM first groups n columns

together to form a super-column, where n equals to GCD (Greatest Common Divisor) of R,C,

such that number of rows and super-columns can become coprime when popular (72, 64) ECC

is used. Then CRM Formula 3.3 can be applied to get a one-to-one mapping. An example of

such mapping is shown in Table 3.2. CRM guarantees that the mapping from super-address

to array LR×T is one-to-one. Then BCRM extend the super-addresses and super-columns

3The notations are different from those in paper [16].
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Table 3.3: An example layout of BCRM with R = 8, C = 6. Addresses 0∼5 are highlighted.

r/c 0 1 2 3 4 5

0 0 1 2 3 4 5
1 18 19 20 21 22 23
2 36 37 38 39 40 41
3 6 7 8 9 10 11
4 24 25 26 27 28 29
5 42 43 44 45 46 47
6 12 13 14 15 16 17
7 30 31 32 33 34 35

to normal physical addresses and columns by adding an offset inside the super-column. The

mapping is thus obtained by

r = ds mod R; c = (t� log2g) + (d mod g)

The left shifting (�) is to extend a super-column to regular columns; (d mod g) adds the

offset of the regular column inside a super-column. Table 3.2 shows an example layout with

R = 8, C = 6. Then, BCRM adds a bias factor to adjust the skewed row indexes in CRM. The

final mapping is obtained by formulas:

ds = d� log2g; Cs = C � log2g

r = (ds − ds mod Cs) mod R; c = (ds + (d mod g)) mod Cs

while −(ds mod Cs) is the bias factor and g is the GCD. Table 3.3 shows a BCRM example

layout with R = 8, C = 6.

With cacheline-interleaving scheme as shown in Figure 2.5, rank, bank and channel indexes

are lower bits and they are still power-of-two. The left diagram in Figure 3.2 shows the address

mapping procedure of cacheline-interleaving using BCRM. After removing the six-bit offset (for

64-byte data block size) from physical address, the remaining block address is first decomposed

to lower bits and the remaining upper bits. The lower bits cover rank, bank and channel

indexes. The upper bits are then decomposed to row and column indexes using BCRM. In our

example, GCD of row and column is 8 and the mapping is done by the following formula:

r = (d− (d� 3) mod 7) mod (3× 213)

c = ((d� 3) mod 7)� 3 + (d mod 8)

(3.4)
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The right diagram of Figure 3.2 shows the procedure of address mapping for page-interleaving

scheme. As shown in Figure 2.5, column indexes are lower bits after removing channel and block

offset in a block address in page-interleaving scheme. We thus first apply BCRM to obtain col-

umn and global row indexes. The global row indexes act as a unique row identifier across all

banks and ranks. It is thus 3 × 217 in total. The mapping can be done by formula 3.4 after

replacing 213 with 217.

r = (d− (d� 3) mod 7) mod (3× 217)

c = ((d� 3) mod 7)� 3 + (d mod 8)

(3.5)

Then the last four bits of the global row indexes are split to rank and rank indexes.

3.4.3 Parameterized BCRM and Hardware Cost

The original BCRM has a simple implementation in embedded ECC because the num-

bers of row and column are fixed, allowing a highly specialized and optimized modulo design.

SEP, however, requires adjustable protection size. We have extended the original BCRM into

parameterized BCRM that allows the divisor to be a configurable parameter. Parameterized

BCRM has higher hardware complexity, which has to be dealt with carefully. Most hardware

complexity of BCRM comes from the modulo operation. Consider a generic modulo operation

v mod m. Study [56] presents an efficient logic design of modulo operation when divisor is a

preset constant number, based on the following property:

v mod m =
n−1∑
i=0

(vi · (2i mod m)) mod m (3.6)

where vi is the ith bit of v in binary form and m is a fixed small integer.

In a word, a modulo small number operation can be done by calculate the number of bits

in a binary representation as the modulo is periodic as we can see in Table 3.4.

Therefore, the mod operation finally converts to count the number of bits in a binary

operation, which can then be translated to a series of table lookup operations. With help of

RAMs, these table lookup operations can be done efficiently.
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Table 3.4: 2n modulo small interger exhibits periodic behavior.

2n mod 3 = 1, 2, 1, 2, ... for n = 0, 1, 2, 3, ...

2n mod 5,= 1, 2, 4, 3, 1, 2, 4, 3....

2n mod 6 = 1, 2, 4, 2, 4, 2, 4, ...

2n mod 7 = 1, 2, 4, 1, 2, 4, ...

2nmod9 = 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, ...

(a+b)%m

+

MUX
0

Ri

MUX
0

Ri+1

addri

addri+1

-
m

MUX

carry

Input Select

Figure 3.3: Part of modulo logic. addri represents ith bit from input address. Ri is register holding
pre-computed value corresponds to 2i mod m in Formula 3.6. m is divisor. Input select takes address
and uses each bit to select a pre-computed Ri. (a+ b)%m is a modulo-sum block which is duplicated in
a tree-like structure; duplicated logic is not shown in this figure.

Other previous work on modulo design focus on special values of m such as m = (2n ±

1) [29, 46, 69]. Since SEP requires flexible modulo operation, none of these modulo algorithm

fit in SEP’s use case.

To our best knowledge, the design presented below is currently state-of-the-art divisor-

parameterized generic modulo operation logic design. This design comprises of first-stage input

select logic and a series of modulo-sum logic blocks in binary tree structure. In each of modulo-

sum block, there are two log2m-bit registers Ri and Ri+1 to hold pre-computed values of

2i mod m, one multiplexer and two log2m-bit adders. Both input select and modulo-sum are

shown in Figure 3.3. In order to process a k-bit input, there should be k − 1 modulo-sum

blocks. In other words, cost to implement modulo-sum is proportional to log2m and k.

In SEP, m can be controlled to be a small integer but its value may vary. We give our own

design as follows. The modulo logic comprises of a first-stage input select logic and a series of

modulo-sum logic blocks, shown in Figure 3.3. The modulo-sum logic blocks are duplicated,

forming a binary tree structure (not shown in the figure). For each bit of input addri, the

input select logic uses one k-bit register Ri holding pre-computed value of 2i mod m and one
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Table 3.5: Segmented BCRM achieves equivalent mapping performance to BCRM; width of CRM input
is reduced by one bit

(a) BCRM; R = 8, C = 7

r/c 0 1 2 3 4 5 6

0 0 1 2 3 4 5 6

1 49 50 51 52 53 54 55

2 42 43 44 45 46 47 48

3 35 36 37 38 39 40 41

4 28 29 30 31 32 33 34

5 21 22 23 24 25 26 27

6 14 15 16 17 18 19 20

7 7 8 9 10 11 12 13

(b) Segmented BCRM R = 8, C = 7, Sseg =
32; two segments

r/c 0 1 2 3 4 5 6

0 0 1 2 3 4 5 6

1 21 22 23 24 25 26 27

2 14 15 16 17 18 19 20

3 7 8 9 10 11 12 13

4 32 33 34 35 36 37 38

5 53 54 55 56 57 58 59

6 46 47 48 49 50 51 52

7 39 40 41 42 43 44 45

multiplexer. Each modulo-sum block uses one k-bit register m holding divisor, one multiplexer

and two k-bit adders, where k = log2m.

The complexity of the modulo logic is a function of the address width. Assume that a

system uses 46-bit physical address, and 1/64 adjustment granularity is needed for the SEP.

The modulo unit will use approximately 9,000 transistors. To our best knowledge, we are

not aware of any existing design that is significantly better than ours for this set of design

requirements.

3.4.4 Segmented BCRM

We further optimize the above design to reduce the hardware complexity. We have found

a new design called Segmented BCRM, which uses a segmented physical address space instead
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Figure 3.4: Address space layout under SBCRM. Assume segment size Sseg = 2GB, (72, 64) ECC
causes 2/9GB invalid addresses in each segment

of a flat space to reduce the complexity. With proper OS support, this change will not cause

any performance loss. It works as follows. We extend the regional physical address space from

d ∈ [0, RC− 1] to its next largest power-of-two address d ∈ [0, 2log2RC − 1]. Then this extended

address space is divided into segments with same segment size Sseg, which is a power-of-two

design parameter. Table 3.5 shows an example. Table 3.5a shows BCRM mapping from [0, 55]

to 2D matrix with R = 8, C = 7, requiring 6-bit input to modulo logic. In Table 3.5b physical

address range is extended to [0, 63] and divided into two segments [0, 31], [32, 63] assuming

Sseg = 32 is used. BCRM now takes log2Sseg = 5-bit input to modulo logic instead of 6. In

this example, segment index (id) is the MSB (Most Significant Bit) of the extended physical

address, which can be obtained without complicated computation. The final mapped location

〈r, c〉 can be obtained by combining id and 〈r′, c′〉 generated from BCRM within each segment.

Segmented BCRM can be expressed with following formulas:

Rs = Sseg � log2C
′; id = ds � log2Sseg

〈r′, c′〉 = BCRM(ds&(Sseg − 1)))

r = (id� log2Rs)|r′; c = c′

Rs is a pre-computed power-of-two value indicating number of rows allocated to each segment.

Sseg−1 generates a binary mask to get lower bits from physical address ds, which is the key part

to limit input width into BCRM mapping. id is then shifted and combined with in-segment

row r′ to get global row r while column c is same as c′. All operations are simple bit operations.
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Compared to BCRM, Segmented BCRM has same latency, row buffer locality but lower

hardware complexity at the cost of not having a continuous physical address space. Note that

it is addresses that are lost not actual memory capacity. Percentage of lost addresses is decided

by choice of ECC. In previous example, [28, 31] and [60, 63] are invalid addresses. Figure 3.4

shows a realistic physical address layout within protected region under mapping of SBCRM. In

the case of (72,64) SECDED code, one ninth of physical addresses are invalid, which is shaded

part in the figure. Non continuous physical address space can be managed by the OS. Segment

size Sseg is a key parameter. A smaller Sseg will lower the modulo complexity, but may limit the

OS’ ability to allocate very large and continuous memory space. After careful consideration, we

find that using Sseg ∈ [1GB, 4GB] is appropriate. These sizes can reduce modulo complexity

to around 4,000 transistors, 55% lower than that of the BCRM. They also give OS enough

freedom to allocate up to 32/9GB memory chunk that is continuous in physical address space,

which is, in most cases, more than enough with the presence of virtual memory system.

This design limits maximum memory capacity a system can have. However, modern pro-

cessors usually have the ability to support much more physical memory than needed. For

example, intel I7 processor has 46-bit wide physical address [25], supporting 16TB memory,

which is more than what most systems need.

3.4.5 Partition Choices and Protection Ratio

BCRM and Segmented BCRM are valid only when R,C are coprime (with or without

super-column grouping). For ECC protection with (72, 64) SECDED code and an adjustment

granularity of 1/64 of total memory capacity (or total rows), 8 out of 65 choices of protection

ratio, namely 7/64, 14/64, 21/64, 28/64, 35/64, 42/64, 49/64, 56/64, should not be used.

The OS may use the other 57 choices of protection ratio. We believe this is sufficient for the

purpose of SEP. The number of valid protection ratios may increase by using a finer granularity,

if desired.
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Table 3.6: Layouts of an S2-CRM mapping before reconfiguration with R = 6, C = 8 and after
reconfiguration adding one row to R = 7, C = 8.

(a) S2-CRM; Before reconfiguration; R = 6, C = 8

row/col 0 1 2 3 4 5 6 7

0 0 1 2 3 4 5 6 7
1 24 25 26 27 28 29 30 31
2 8 9 10 11 12 13 14 15
3 32 33 34 35 36 37 38 39
4 16 17 18 19 20 21 22 23
5 40 41 42 43 44 45 46 47

(b) S2-CRM; After reconfiguration. C =8 while R
increases from 6 to 7

row/col 0 1 2 3 4 5 6 7

0 0 1 2 3 4 5 6 7
1 8 9 10 11 12 13 14 15
2 16 17 18 19 20 21 22 23
3 24 25 26 27 28 29 30 31
4 32 33 34 35 36 37 38 39
5 40 41 42 43 44 45 46 47
6 48 49 50 51 52 53 54 55

3.4.6 Operating System Support

SEP demands some OS modification to support SEP memory system. OS needs to manage

multiple separated memory spaces instead of one. We can safely assume OS, with moderate

modifications, has the capability to handle this task. One of the straightforward approach

is adding Protection Flags to memory management related data structures, so that OS can

easily differentiate between protected memory and unprotected memory. More sophisticated

and superior design may also be possible, but it is outside scope of this work, therefore we do

not include the discussion here.

SEP (re)configuration support must be added to OS. This is needed at boot time and when

SEP policy decides to adjust protection ratio. When reconfiguration happens, some registers

in mapping unit need update to enable new mapping function. Moreover, data movement may

be needed too, details of which is given in next section.

Overhead of data movement is determined mostly by memory utilization and frequency of

reconfiguration. Fortunately, only the ordering of rows is changed while ordering of columns is
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untouched. Therefore row-based data movement is most likely only bottlenecked by memory

bandwidth. In an 8 GB DDR3-1600 memory system with 100% memory utilization, a pes-

simistic estimate of time is 1.9 seconds. when a reconfiguration is demanded, OS needs to read

8 GB data and write back same data, making a total of 16 GB. Assume OS suspends other

activities when data is being moved, all available DRAM bandwidth can be used to transfer

data. Bandwidth available for data movement is around 8.4 GB / Second, even if we take into

account various DRAM timing restrictions that may limit effective bandwidth utilization to

70%. In this case, time overhead of data movement is only 16GB ÷ 8.4GB/S ≈ 1.9Seconds.

At time of protection ratio adjustment, mapping unit also needs to be reconfigured, espe-

cially its core part, modulo logic. Assume flexible design introduced in Section 3.4.3 is used,

reconfiguration is nothing but updating registers like Ri and m shown in Figure 3.3 according

to new divisor.

3.4.7 Various Error Protection Codes

Although previous case study use (72,64) hamming-based SECDED code, this framework

can extend to many other error protection codes. From an architectural point of view, major

differences of various codes is word size, which changes number of words a row can accommo-

date. Due to flexibility of CRM variants like S2-CRM, we can find a perfect mapping for every

combination of rows and columns.

Besides, the proposed address mapping schemes can be extended for memory systems with

more than two regions for various error protections strategies. For example, a system can have

three regions with one unprotected, one with SECDED protection and the remaining part with

BCH DECTED (Double-bit Error Correcting Triple-bit Error Detecting), respectively. Such a

partitioning further tunes the system in fine granularity for strong reliability while maintaining

efficient energy consumption. The details of the extension is not presented and the address

mapping is similar to that of two-region system.
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3.5 Experimental Methodologies

We build a detailed memory system simulator for a x32 DDR3 memory system and integrate

it into Marss-x86 [45], which is a cycle-accurate full system simulator for x86-64 architecture.

In the DDR3 simulator, we integrate different address mapping schemes with both cacheline-

and page-interleaving scheme. A set of real-world product technical specifications serves as

configuration of DDR3 simulator, details can be found in MT41J256M8-32 Megx8x8Banks

datasheet [39]. Table 3.7 and Table 3.8 show major parameters for the simulation platform and

memory power calculator used in our experiments. We use sub-ranked memory scheme [67]

because our framework uses ECC storage technique in E3CC, which conserves more energy

with sub-ranked memory.

We select benchmarks from SPEC CPU2006 [20] and run the simulation with both single-

core and four-core configurations. For our proposed address mapping schemes, one extra mem-

ory cycle is added for each memory access. We also simulate division-based address mapping

scheme, adding eight memory cycle latency [8]. Eight memory cycle is an optimistic division

latency. It is equivalent to 32 processor cycles in our simulation setup, while an unsigned

64-bit integer division takes at least 38 cycles in Intel 64 and IA-32 architectures [25]. Divi-

sion operation is difficult to pipeline and its throughput is usually limited. Experiments are

also designed to measure performance penalty when there are limited number of dividers and

division is not fully pipelined. We create checkpoints for Marss simulator after initialization

and warm-up. After a warm-up period, we run the simulation for 300 million instructions in

single-core experiments and 1 billion instructions in four-core experiments.

We do not simulate detailed SEP profiler or protection ratio decision logic since they are

out of this study’s scope. Therefore, reliability evaluation of SEP scheme is not included as it is

mostly decided by high-level SEP profiler and policy, not by memory system support framework

proposed in this work. In experiments where SEP logics are needed, we simply use arbitrary

protection ratios, which should be able to represent typical usage scenarios.
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Table 3.7: Major simulation parameters.

Parameter Value

Processor

1 or 4 ooo cores
3.2GHz
14-stage pipeline
4-issue per core

Functional units
2 IntALU
4 LSU
2 FPALU

IQ, ROB and LSQ
IQ 64
ROB 128
LSQ 96

Physical registers
256 Int, 256 FP
48 BR, 24 ST

L1 caches (per core)
64KB Inst/64KB Data,
8-way, 64B line,
hit latency: 3-cycle for Inst & Data

L2 cache (shared)
4MB, 8-way, 64B line,
13-cycle latency

DDR3 DRAM latency DDR3-1600 11-11-11

DRAM Hierarchy
2 Channel, 1 DIMM per channel,
1 Rank per DIMM,
2 Sub-Ranks per Rank

Table 3.8: Major DRAM power parameters. They are taken from Micron datasheet [39].

Parameter Value

Normal voltage (Vdd) 1.5V
Active precharge current (IDD0) 95 mA
Precharge power-down standby current (IDD2P) 12/35 mA
Precharge standby current (IDD2N) 42 mA
Active power-down standby current (IDD3P) 40 mA
Active standby current (IDD3N) 45 mA
Read burst current (IDD4R) 180 mA
Write burst current (IDD4W) 185 mA
Burst refresh current (IDD5) 215 mA

3.6 Experimental Results

3.6.1 Memory-Level Parallelism

We have excluded channel-, rank- or bank-based partitioning because they limit the choices

of protection ratios, particularly for a relatively small memory system. They also limit memory-

level parallelism and thus degrade performance, which is evaluated in this section. Assume that

four of eight memory banks are configured with ECC protection, therefore a program using ECC

memory has only four banks to access. In the row-based partitioning, the programs access all the

eight banks. Figure 3.5 compares the performance of those workloads with 4-bank and 8-bank
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Table 3.9: Workload construction. Memory Intensive (MEM) workloads contains only those bench-
marks whose MPKI (Misses Per Kilo Instructions) >= 10; Each MIX workload contains 2 memory
intensive benchmarks and 2 less intensive (MPKI < 10) benchmarks.

Workload Applications

MEM-1 mcf, soplex, libquantum, milc
MEM-2 mcf, soplex, libquantum, sphinx3
MEM-3 mcf, soplex, lbm, sphinx3
MEM-4 mcf, lbm, milc, sphinx3
MEM-5 soplex, libquantum, lbm, milc
MEM-6 libquantum, lbm, milc, sphinx3
MEM-7 bwaves, sphinx3, lbm, milc
MEM-8 bwaves, mcf, soplex, leslie3d
MEM-9 GemsFDTD, bwaves, lbm, xalancbmk
MEM-10 GemsFDTD, mcf, sphinx3, bwaves
MEM-11 soplex, libquantum, GemsFDTD, lbm
MEM-12 lbm, mcf, sphinx3, bwaves
MIX-1 lbm, sphinx3, tonto, calculix
MIX-2 lbm, milc, tonto, namd
MIX-3 libquantum, milc, gcc, namd
MIX-4 mcf, sphinx3, gobmk, calculix
MIX-5 mcf, soplex, gobmk, sjeng
MIX-6 soplex, libquantum, sjeng, gcc
MIX-7 lbm, sphinx3, perlbench, bzip2
MIX-8 lbm, leslie3d, gromacs, cactusADM
MIX-9 libquantum, GemsFDTD, povray, hmmer
MIX-10 mcf, sphinx3, h264ref, omnetpp
MIX-11 bwaves, soplex, perlbench, astar
MIX-12 bwaves, libquantum, cactusADM, povray

configurations. As high as 13% performance loss is observed. The average performance loss

is 6.6% and 4.7% for page- and cacheline-interleaving schemes, respectively. The performance

loss of channel- or rank-based partitioning will lead to much higher performance loss, because

the degree of memory-level parallelism will be severely limited. Although these experiments

only covers the case where parallelism is reduced at bank-level, similar result is expected when

reducing channel- or rank-level parallelism by same percentage. Thus, partitioning by channel,

rank or bank is not acceptable.

3.6.2 Performance Impact of Division

Division is the most straightforward way to implement non-power-of-two address mapping.

However, using division operation as mapping function here could potentially penalize sys-
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Figure 3.5: Normalized SMT speedup when bank parallelism reduces. All speedup are normalized to
that of plain mapping.

tem performance. This is because division operation has relatively long latency and limited

throughput.

In this section, we evaluate the performance impact of using division-based address mapping

instead of BCRM and Segmented BCRM. We design experiments to measure the performance

penalty when division is used as mapping function, including both an ideal scenario with no

queuing delay and a realistic scenario with queuing delay. In our experiments, division operation

is assumed to have an optimistic latency of eight memory cycles (equivalent to 32 processor

cycles). In the ideal scenario, the number of dividers is assumed to be infinite so that memory

requests have no queuing delay. We assume to have a FCFS queue for using the dividers, and

evaluate the performance of one, two, four and unlimited number of non-pipelined dividers.

Figure 3.7 and Figure 3.8 show that with unlimited number of dividers, performance loss is up

to 6.1% for multi-core workloads and 13% for single-core workloads. The performance loss is

caused by latency of the divider. With one divider, the performance loss ranges from 38% to

62% for those four-core MEM workloads. The performance loss shown here is mostly due to

throughput limit of having only a few divider. In other words, a larger scale memory system
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Figure 3.6: Single-core IPC when bank parallelism varies. All IPCs are normalized to that of plain
mapping.

requires more dividers to minimize the performance penalty. In our experiments, four-divider

system is enough to minimize the queuing delay for a two-channel memory system. However, it

is impractical to include two or more dividers dedicated for memory address mapping purposes.

Even in modern high-performance processors, the number of dividers is very limited due to its

logic complexity. Therefore, division-based mapping is not feasible with reasonable hardware

cost budget.

3.6.3 Performance Impact of BCRM and Segmented BCRM

BCRM and Segmented BCRM have identical performance. We run simulations with the

plain address mapping and SBCRM and compare their performance. Figure 3.9 shows the

normalized performance of multi-core workloads. Compared to the plain mapping, SBCRM

has slightly longer latency for address mapping than plain mapping. We assume extra latency

of one memory bus clock cycle. The performance impact is negligible. For MEM-6 workload,

we even observe a slight 1% performance improvement which is probably caused by the change

of memory address mapping pattern.
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Figure 3.7: SMT speedup when various number of dividers are available. All speedup are normalized
to plain mapping.

On average, SBCRM causes 0.4% performance loss for four-core workloads and 1.5% per-

formance loss for single-core workloads.

3.6.4 Memory Energy Consumption

Compared to non-ECC memory, ECC memory incurs energy overhead. The overhead can

be split into two parts, the energy for operating the memory devices for ECC and the energy

for transferring ECC on memory bus. SEP can effectively reduce energy of both storing and

transferring ECC when compared to E3CC and conventional 9-device ECC memory. To quan-

tify the energy saving, we evaluate the energy consumption of programs running in the SEP

framework.

We model the energy consumption of SEP scheme using the following formula:

ESEP = EnoECC + (EembeddedECC − EnoECC) ∗ Ratio (3.7)

where EembeddedECC is the energy consumption of memory with embedded ECC, calculated in

the same way as in [8]; and Ratio is the protection ratio of a workload’s memory. Note that

this simple model does not consider the variation of access frequency to the two regions. Four
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Figure 3.8: Single-core IPC when various number of dividers are available. All IPCs are normalized to
that of plain mapping.

choices of the protection ratio are presented, namely 10%, 20%, 36%, and 50%, respectively.

Out of all four choices, the key protection ratio is 36%, which provides 99% reliability according

to previous study.

In Formula 3.7, SEP energy is modeled as a linear function of protection ratio and E3CC

energy overhead against unprotected scheme. We believe this model is accurate enough because

extra energy is only needed when protected region is targeted. Assuming uniform memory

access, the number of memory requests in protected region should be linear to protection ratio.

Figure 3.11 shows the energy saving of SEP when the protection ratio varies. The energy

consumptions for non-ECC and full-ECC are directly collected from simulation. Conventional

nine-device full-ECC consumes approximately 12.5% extra energy than non-ECC, which (al-

though not shown in figure) is higher than any other schemes presented. The SEP energy is

estimated using Formula 3.7. As the figure shows, Embedded ECC with full ECC protection

incurs extra energy consumption that ranges from 13% to 18% for memory-intensive workloads

and 5% to 16% for mixed workloads. In the case of protecting 36% memory, energy overhead
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Figure 3.9: Four-core workloads SMT speedup with different mapping schemes. All speedup are
normalized to that of plain mapping.

ranges from 2% to 6%, which is much lower than other full ECC protection at the cost of losing

1% reliability.

3.7 Summary

We have presented an efficient memory SEP mechanism to support a memory SEP system

using commodity memory modules and devices. It partitions the whole set of DRAM rows into

two regions, a non-protected region and an ECC protected region. A new address mapping

scheme called parameterized BCRM is proposed to map physical memory address into DRAM

device address components, as well as Segmented-BCRM design which reduces cost more by

basing itself on a non-continuous memory address space. With this support, the OS may dy-

namically adjust the sizes of the ECC protected region and the non-protected region according

to application demands. Our evaluation shows that the design incurs negligible performance

overhead and improves memory energy efficiency.
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Figure 3.10: Single-core workloads IPC with different mapping schemes. All IPCs are normalized to
plain mapping.
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Figure 3.11: Four-core energy consumption normalized to non-ECC memory system. Non-ECC is
equivalent to 0% protection ratio with slight mapping latency difference. Full-ECC is equivalent to
100% protection ratio.
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CHAPTER 4. FLEXIBLE MEMORY: A NOVEL MAIN MEMORY

FRAMEWORK BASED ON MEMORY COMPRESSION

4.1 Introduction

Main memory has been identified as one of the most critical performance bottlenecks in

modern computer systems. There are several reasons behind it. First, processors and on-

chip caches have received more speed boost than DRAM-based main memory, making memory

access more costly in terms of processor clock cycles. Furthermore, computer manufacturers are

putting more cores in processor chips, enabling more processes or threads running concurrently.

It is common for a GPU to have several hundreds of cores generating enormous amount of

memory traffic. Applications are also becoming more data-intensive and therefore issue more

memory access requests than before.

Today’s data-intensive applications not only send more memory requests, they also keep

more data in main memory, demanding higher capacity. If such demand can not be met by main

memory, widely employed Virtual Memory scheme has to swap data between main memory

and main storage (usually hard disks) to create the illusion of large memory space. However,

access speed of main storages are several orders of magnitude lower than main memory, making

each swapping a considerable performance burden. The situation becomes even worse for

capacity-demanding applications because they tend to have more page faults. Simply scaling

up memory capacity to meet the increasing demand is not a sufficient solution, because it

also scales up memory cost and energy consumption, and DRAM fabrication does not scale as

well as processor. In some server systems, for example, the main memory alone can consume

more than half (57%) of whole system energy cost (not including energy of associated cooling

components) [35].
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Block-level hardware memory compression is promising to increase the effective memory

capacity and bandwidth, as it reduces memory footprint and memory traffic [13, 48, 49]. It is

unlike earlier hardware memory compression (e.g. MXT [57, 1, 58] or OS-based compression,

which increase memory traffic and therefore not suitable for memory-intensive multi-core ap-

plications. The approach only requires proper OS support and is transparent to application

software. The approach also has its own challenges to overcome. First, address mapping from

main memory address to memory device address is more complicated. Conventional simple ad-

dress mapping, which relies on uniform memory block size and simple, sequential layout, may

not work in compressed memory. Second, there is a new scenario called fat write [33], which

refers to the type of write operation that triggers storage expansion in compressed memory.

When it happens, non-trivial operations are needed to make enough room for the new data.

Such operation can be very costly as they may involve movements of multiple memory blocks.

A mechanism that can minimize fat writes and/or reduce overhead of each fat write has to be

put in place to make memory compression practical.

Several main memory compression schemes have been proposed in the past. MXT [57, 1, 58]

uses an additional layer of address mapping to locate large chunks (1KB) of memory space and

a large (32MB) cache to buffer decompressed data for quick access. This design not only

adds considerable logic overhead but also increases memory traffic: Program execution at

CPU can not directly access compressed data, and thus compressed data has to be read out,

decompressed and then written to memory before the access, in a way similar to page fault

handling. Recently proposed, block-level hardware compression has addressed this weakness

by allowing direct program access to compressed data, usually in granularity of cache-line size.

Robust memory compression [13] uses a page-level structure to organize the compressed blocks.

However, its organization of compressed blocks incur high latency overhead when locating a

compressed block. LCP [48, 49] simplifies the locating process by allowing only one common

block size of compressed data in each page, keeping compressed cache-lines in sequential order.

An over-sized block is stored in a reserved space with the indirection information stored in

the original block location. However, such a design may not fully explore the compression

opportunity of a program that has high variation in compressed block size. MemZip [54] uses
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memory compression to reduce memory traffic. To avoid address mapping complexity, the

extra space from memory compression are not utilized to improve memory capacity.

In this work, we investigate in Flexible Memory, a new design of block-level hardware

memory compression. Any memory compression scheme will complicate the layout of memory

contents in the physical memory storage. While decompression latency can be minimized using

recently proposed, fast decompression methods, locating the compressed block may potentially

incur high overhead to memory access latency. To help address this issue, our design uses a

unique data structure called BMT (Block Mapping Table) and a set of supporting components

in the memory controller. A BMT holds the location information of all memory blocks belonging

to an OS page. The BMT structure is designed so that a single access to BMT is sufficient

to locate any memory block in a page, and it is compact enough such that a BMT can be

fetched into the memory controller easily. The memory controller embeds a small BMT cache

to facilitate BMT access, which has high hit rate for the workloads we evaluated. Coupled with

recently proposed, high-speed high-throughput Base-Delta-Immediate (BDI) compression [50]

and Frequent-Pattern Compression (FPC) [4], the use of BMT and BMT cache eliminates the

majority of time overhead in accessing a compressed memory block. Furthermore, the design

optimizes the page-level organization to reduce page expansion from fat writes. Our evaluation

shows that, on average, the design yields 1.5x improvement of memory capacity, 14% power

saving, and 7.5% performance improvement in weighted IPC speedup.

The rest of this paper is organized as following: Section 4.2 discusses the previous work of

main memory compression scheme. Section 4.4 illustrates the basic idea and detailed implemen-

tation of Flexible Memory. Section 4.5 presents the simulation methodology and environment.

Evaluation results are shown in Section 4.6. Section 4.7 concludes the work.

4.2 Background and Prior Work

4.2.1 Compression Algorithms

To achieve good performance in a compressed memory scheme, a lossless compression algo-

rithm with low latency, satisfactory compression ratio and simple implementation is essential.
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In this section, we give introduction and discussion of algorithms used in previous works and

Flexible Memory for compression of block granularity.

Zero-value compression [68] is a simple compression method based on the insight that

many applications have dominating amount of zero-values in their memory spaces. Thus,

simply marking all-zero pages/blocks with a flag bit in page table can be used as a compression

method.

BDI (Base-Delta-Immediate) [50] is a cache-line granularity compression algorithm that

looks for B + ∆ patterns. B stands for a common data base shared by the data values stored

in segments within a given cache-line, and a shorter ∆ represents difference between each data

value and the base. It requires less bits to encode ∆ than the full data value. Immediate values

are used in the case that most data values fit in the pattern but a few do not fit and are close to

zero-value. After the compression, the size of the cache-line becomes 1×B+n×∆i+c×Ii. Both

compression and decompression of BDI can be finished within one processor clock cycle. Since

nothing but additions and subtractions are involved in computation of BDI, its implementation

complexity is low enough to be duplicated to parallelize its operation. FVC (Frequent Value

Compression) [66, 63, 62] is also a cache-line granularity compression algorithm. It exploits the

pattern that some values appear in memory more often than others, like 00000000, 11111111,

01010101 etc. For these common values, a 3-bit encoding id is used to replace actual data. For

other uncommon values, FVC leaves them uncompressed and mark them with a flag bit.

Latency of FVC algorithm depends on size of data, as compressed data segments have

variable length, and the meaning of current value segment depends on the interpretation of

previous one. Typically, for a 64B cache-line, decompression latency can be more than 5

cycles.

FPC (Frequent Pattern Compression) [4] is another cache-line granularity compression al-

gorithm. FPC explores sparse data patterns. For instance, in a 32-bit word value resulted from

sign extension of 16-bit word, only the lower 16 bits and the sign bit are significant. In this

case, a 3-bit encoding id is used to identify this data pattern, followed by the 16 data bits.

Data segments that can not fit in the pattern are left uncompressed with a flag attached. The

compression/decompression latency of FPC is longer than that of BDI. It takes approximately
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five processor clock cycles in a typical implementation compared to one processor cycle of BDI

latency.

4.2.2 Prior Work

MXT (Memory Expansion Technology) [57, 1, 58] is a hardware memory compression

scheme from industry. It divides main memory into relatively large (1 KB) blocks. Memory

blocks are decompressed and filled into a large (32 MB) shared cache when requested. Program

execution at the processor does not have direct access to compressed data. At the time of cache

eviction, a data blocks is compressed again and written back to main memory. This approach

may significantly increase the effective memory capacity, but may also increase memory access

latency for uncached data and memory traffic.

Ekman and Stenstrom proposed RMCS (Robust Memory Compression Scheme) [13]. It

is block-level compression with direct program access to the compressed data, therefore the

increase of memory latency is moderate. In each page, the size information of all compressed

blocks is stored in a header BST (Block Size Table), which is also used to locate a compressed

block. A drawback of the BST is that the location of a block is calculated by summing up the

sizes of all preceding blocks, adding extra latency on critical path. Additionally, this design

does not allow out-of-order block placement or unutilized free space between blocks in most

cases. Therefore, when block overflow or underflow happens, the only choice is often to shift

following blocks to either make more space or to remove empty space.

Pekhimenko et al. proposed LCP (Linearly Compressed Pages) [49, 48]. It divides each

page into three sections, namely compressed, uncompressed, and metadata sections. Blocks

that can be compressed to an arbitrary size are stored in-order in the compressed section.

The other blocks are stored out-of-order in the uncompressed section and indexed by pointers

stored in the metadata section. This design enables LCP to quickly locate a block with little

computation and partially allows out-of-order block placement to reduce the overflow overhead.

However, compressibility is limited due to following reasons: 1) The size of smaller block has

to be rounded up to linear size; and 2) an over-sized block costs storage space in both the

uncompressed section and the compressed section.
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Recently, Shafiee et al. proposed MemZip [54] that focuses solely on power, bandwidth and

reliability benefits. It uses the same memory block layout as an uncompressed memory, but

compresses block data to reduce memory traffic, and make the extra space in a given block

available for reliability mechanism as extension. It does not increase the effective memory

capacity, and therefore can avoid the complication from using a compressed memory layout.

Blocks are compressed to smaller sizes but still allocated 64 Bytes and stored at same location as

in uncompressed main memory scheme, leaving unused space available for reliability mechanism.

Variable memory burst length combined with DBI (Data Bus Inversion) technique is employed

to get considerable power and bandwidth gain. However, unlike the other designs, this design

does not increase memory capacity.

4.3 Challenges of Compressed Memory

Traditional main memory design follows the following principles (although some variants of

design may differ):

• Storing data in raw format, each byte of data occupies one physical address.

• Placing data in strict order according to its assigned address. Physical address is con-

verted to device cell location by simple truncating.

Being straightforward, simple and effective, Traditional Memory Design has been long

used as main memory system. During the time when speed gap between processor and memory

device was narrow enough, sophistication level of traditional memory was more than enough

to to handle demand of memory traffic. However, following Moore’s law, computation ability

roars, bringing much heavier load on memory traffic. Memory systems are stressed in many

cases, especially in server clusters. It has been reported that on IBM eServer, main memory

alone consumes as much as 40%[35] of total system energy. With huge power consumption and

unsatisfactory performance, we can conclude that traditional memory design is starting to hit

its limits in terms of latency, capacity, power and bandwidth limitations.

Power as the currency to buy more performance proposes greater and very unique chal-

lenge. Also it has drawn more and more attention in both academic and industrial field as the
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popularity of mobile device advances and they generally have very limited energy budget and

performance per watt metric has become one of top performance metrics. However, previous

memory compression works doesn’t reach DRAM operation details and thus not able to provide

very accurate DRAM power changes caused by memory compression.

We can take bandwidth as an example to address the limitation of traditional memory

design. Bandwidth is defined as maximum amount of data that memory system can process in

a fixed amount of time. In multi-core processors environment, bandwidth demand is usually

high and memory traffic has to be queued, leading to higher queuing delay. Straightforward

and effective solution is upgrading to higher frequency bus or accommodating more memory

channels, incurring monetary cost and more importantly higher power consumption.

In order to avoid a dilemma like this, we need to break the strong binding between number

of data bytes and amount of information. In traditional memory design, 1 byte data ≡ 1

byte information. While in essence, information is what processors need and amount of data

is what burdens memory system.

So now we have a clear picture that the optimal way is to reduce number of bytes trans-

ferred on the bus while keeping amount of information conveyed unchanged. Main memory

compression is an obvious solution to effectively save power and bandwidth.

However, main memory compression obviously breaks base rocks that traditional memory

system is built on. Thus, it proposes several challenges and if not handled well, it incurs great

complications and performance downgrade. So we propose a new DRAM-based memory scheme

Flexible Memory.

First challenge is addressing, blocks no longer have fixed size and it would be wasting

memory resource and negating the whole purpose of main memory compression to allocate

memory blocks same space and location as in traditional uncompressed memory. Therefore,

memory blocks should be able to be placed in arbitrary order. However, traditional memory

system rely on simple implicit address operation to locate a block, which can not be easily

adapted towards arbitrarily placed blocks.

For addressing challenge, we propose a unique data structure BMT (Block Mapping Table)

and a whole set of supporting components. Its core data contains offset/size pair of every block
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in each compressed page. BMT resides in main memory together with memory pages, And we

propose a fully-associative BMT Cache to ensure timely access to BMT structure of each page

without requiring 2x memory access. Main memory controller can then read out page offset

of each memory block according to its BMT. Also, we add another layer of address mapping

after traditional virtual-physical address translation that supports various page sizes. We call

it virtual physical address. Combining virtual physical address and BMT information, it is

easy to locate a block in DRAM.

Second challenge is page reorganization handling. In compressed main memory, fat write

[33] is the most common and major reason for overhead. It comes from the fact that each block

is able to have various size and a memory write request could mess up block layout by trying

to fit a larger block into its original smaller slot. In order to avoid correctness issue, block

movements are necessary to adjust block layout to make room for new block. Without proper

data structures, policy and logic support, this could incur high overhead.

To tackle this challenge, we rely on great flexibility provided by BMT. As any block can be

placed at any location that has enough free space for its compressed size, instead of following

sequential order of any kind, we are able to move away any block that is in the way of any

layout adjust attempt. With least restrictions, main memory controller can pick wisest block

movement method to make room for new blocks.

Third challenge is how to get most bandwidth benefits out of main memory compression.

Previously proposed main memory compression works rely on DRAM Cache to hold addition-

ally fetched data. These extra data may be useful for future memory accesses. However, this

relies on memory access locality to work. For applications with poor memory access pattern,

DRAM Cache traffic reduction may not perform as well as expected.

4.4 Flexible Memory

4.4.1 Page Structure

The design of flexible memory aims to have fast access to compressed memory blocks, high

utilization of memory capacity, and flexible structure for future extension (e.g. for reliability).
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Figure 4.1: Traditional OS page. All blocks are placed back to back sequentially.
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Figure 4.2: A Flexible Memory OS page. The beginning of page is Block Mapping Table,
containing pointers to each memory blocks represented by grey boxes.

The design uses a page structure that allows arbitrary size (among a list of choices) for each

memory block while keeping block locating as efficient as possible. In each page, the header

stores the offset and size of all memory blocks in the page. The page header is carefully design

such that it is the same size of a memory block (which is of cache-line size), so the page header

can be fetched using a single memory access and can be cached in processor. This requires both

offset and size of each cache-line stored in page header. Although doing so adds more space

overhead, it is only a minor offset to memory capacity improvement by compression. With

support of such page header, cache-line layout can be very flexible.

Figure 4.2 shows an example of the page structure. A compressed page in Flexible Memory

is composed of two parts, a BMT section and a data section. The BMT is always located

at very beginning (offset 0) of each compressed page, followed by the data section. The data

section includes 64 compressed blocks followed by unused space. Within the data section, the

block layout is highly flexible. The block layout can be out-of-order; for example, in Figure 4.2,

block #4 is located before block #1. The layout also allows slacks between memory blocks,

and the slacks can be utilized for expanding or relocating a memory block. Each compressed

block can have an arbitrary size (in a small granularity). It is not required that all compressed

blocks in a given page must be of the same size.



www.manaraa.com

53

The process of locating a compressed block is highly efficient, even with the flexible layout.

It only requires a single BMT lookup, which is cached in a BMT cache in the memory controller.

The performance of the BMT cache is similar to that of TLB (translation look-aside buffer),

which is usually very good for real-world programs. If a page located at address 0x3456000

has same layout as example shown in Figure 4.2, a memory request accessing block #4 can be

completed with following simple steps. Firstly, BMT entry for block #4 located at 0x3456000+

pair size∗4. After this lookup, FM gets its relative offset of 192 (0x12). Then a simple addition

0x3456000 + 0x12 = 0x3456012 would give physical address of requested block.

The flexibility in this design helps reduce memory access overhead. By comparison, RMCS

does not allow slack space, and all blocks have to be placed back-to-back. When there is size

change of a compressed block in RMCS, following blocks in the same page have to be shifted to

avoid leaving slack space, causing high overhead. Flexible Memory allows slack space to exist

in data section, eliminating this overhead. This flexible design also helps improve compression

ratio. When a page with n blocks is loaded into main memory, each block is compressed to as

small size as possible. Also, it is beneficial to add a small piece of slack space of size sr on top

of it as buffer area for future fat writes.

The slacks in a compressed page are managed as follows. At time of initial compression,

there is no slack between blocks. Compressed page size is calculated by adding up the sizes of

BMT and all blocks. To reduce management overhead, we pre-define 16 sizes of compressed

page, and the page size is typically rounded up to the closest pre-defined compressed page size

level. This leaves a relatively larger free slack space at end of page. During program execution,

a fat write may cause a block to be re-located, leaving the previous location unused to become

a chunk of slack. These slacks are useful in fat write handling. Suppose there is a block at

offset o with size s, and an incoming write request causes the block to increase by ∆ bytes.

If there happens to be a piece of slack space adjacent to the compressed block, and the slack

size is larger than ∆, then this fat write can be done with a single memory write, just like non

fat write requests. The only overhead incurred is updating the block info in BMT, which is

very convenient as it is cached in the BMT cache (see Section 4.4.5 for more details). Even if

no adjacent slack space is available, a non-adjacent slack with size s + ∆ is also able to hold
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incoming data. A simple write request redirection to slack space would suffice to handle fat

write. Similar to previous case, no extra memory operations are needed.

4.4.2 Memory Operation Handling

In order to comply with variable page size, physical address space of Flexible Memory is not

uniform. Therefore, cache mapping needs changing in order to avoid performance overhead.

Thus we use block index for cache mapping instead of page offset.

When OS sends a memory access request, unlike traditional memory where page offset is

sent together with page address, page offset is separated into block index and block offset.

Block index, together with page base address is good enough for all cache operations.

When LLC (Last Level Cache) issues a request to a compressed page in main memory,

BMT is essential to completing the request. Firstly, a query to BMT cache is sent to see if

corresponding BMT entry is cached. If not, a BMT cache miss event is executed to fill BMT

Cache.

After retrieving BMT, memory controller uses block index to get block offset from BMT

within the page. Combining BMT offset and physical page base address gives memory controller

location.

To distinguish physical address layer with variable page size from traditional physical ad-

dress, we name it VPA (Virtual Physical Address).

Memory address locating process is shown in Algorithm 1.

After locating the block, memory read access is usually nothing but determining whether

accessed block is compressed or not. If uncompressed, retrieved data is directly returned.

Otherwise, another step of decompression is needed. This memory read process is shown in

Algorithm 2.

Memory read access usually goes as what is described above, while memory write is more

complicated because it may change block size. In this case, main memory controller needs to

figure out if current page has a free slot for it. If so, then likely a block movement is required,

then a BMT update event is triggered and new block offset and size are filled to corresponding

entry of BMT Cache, ensuring correctness of future memory access.
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Algorithm 1 Memory Block Locating

PA⇐ Physical Address
PPN ⇐ PA &Page Number Mask
V PN ⇐ Page Table(PPN)
if Page Compressed then

if PPN NOT cached in BMT Cache then
Retrieve BMT from (PPN, BMT Offset)
Evict victim BMT from BMT Cache

end if
BMT ⇐ BMT Cache
BlockID ⇐ PA &Block ID Mask
Block Offset⇐ BMT (BlockID)
Block Size⇐ BMT (BlockID)

else
Block Offset⇐ BMT (BlockID)
Block Size⇐ BMT (BlockID)

end if
V PA⇐ V PN |Block Offset
return (V PA,BlockSize)

Algorithm 2 Memory Read

PA⇐ Physical Address
(V PA,BlockSize)⇐ locateBlock(PA)
if BlockSize 6= RawBlockSize(64Byte) then
Compressed Data⇐ retrieve(V PA,Block Size)
Uncompressed Data⇐ uncompress(Compressed Data)

else
Uncompressed Data⇐ retrieve(V PA,Block Size)

end if
return Uncompressed Data
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Figure 4.3: Reorganization Example

However, it is possible a new block is expanding to a new size and there isn’t a continuous

free slot in its owner page to hold it. Then some block movement are required so that separate

slots can be combined together, creating enough continuous space.

Figure 4.3 demonstrates a simplest example of page reorganization. In original state, three

blocks are represented by three different kind of shades and they don’t overlap with each other,

and there is 8 byte free space between block #2 and block #3 . However, when memory

controller tries to write new data to block#2 that cause a block size expansion with size

delta larger than 8 Byte, if no adjustment is made, ”attempted state” would happen and it

is obviously over-writing data of block #3, causing correctness issue. Thus, assuming block

#3 has enough following free space, we only need to shift block #3, giving enough room for

enlarged block #2. Though many cases are more complicated than this and more blocks are

involved, solutions used are similar. And we call this method reorganization.

However, when a page doesn’t even have free space to accommodate size delta at all, we

have to extend size of page to create more space. And we name this process as page expansion.

Moreover, if a page is already of largest compressed size possible, next expansion would cause

size to be over 4KB, expansion is not possible any more. Then this means this page is not

suitable to be compressed , thus it should be decompressed to its original state. Detailed

process can be found in Algorithm 3.

4.4.3 Page Table and Sub-page Management

In Flexible Memory, the memory is divided into 4KB physical pages (which is assumed to

be OS page size), and each page is divided into sub-pages of 256 bytes each. A compressed

page must occupy a set of sub-pages within a single memory page container. Thus, the size of

a compressed page is multiple of 256 Byte, resulting in 16 possible sizes (1 to 16 sub-pages).
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Algorithm 3 Memory Write

PA⇐ Physical Address
(V PA,OriginalBlockSize)⇐ locateBlock(PA)
V PN ⇐ V PA&Page Number Mask
NewBlockSize⇐ compress(WrittenData)
if NewBlockSize ≤ OriginalBlockSize then
writeToMemory(V PA,NewBlockSize)
if NewBlockSize 6= OriginalBlockSize then
updateBMT (V PA,NewBlockSize)

end if
else
NewOffset⇐ findSlot(BMT,NewBlockSize)
if slotFound then
NewV PA = V PN‖NewOffset
writeToMemory(NewV PA,NewBlockSize)
updateBMT (NewV PA,NewBlockSize)

else
LockPage
Page Layout Reorganize
UnlockPage
NewOffset⇐ findSlot(BMT,NewBlockSize)
if slotFound then
NewV PA = V PN‖NewOffset
writeToMemory(NewV PA,NewBlockSize)
updateBMT (NewV PA,NewBlockSize)

else
Decompress Page()
(UncompressedV PA,BlockSize)⇐ locateBlock(PA)
writeToMemory(UncompressedV PA,BlockSize)

end if
end if

end if
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It requires some changes to the page table as follows. In the PTE (Page Table Entry), extra

fields are added to keep track of the starting address and number of sub-pages used by a page.

Suppose sub-page size is ssub, and size of a page container is s (4KB), then the number of bits

needed to store its starting address is: log2s/ssub, same number of bits are also needed to store

number of sub-pages occupied. In our design, this adds up to 8 bits. In current processors, the

PTEs usually have reserved bits or unused bits [9] that can be utilized for this purpose.

Virtual Page Index In-page offset

Physical Page Index In-page offset

Sub-page Index 
(4 bits)

Page Size
(4 bits)

Figure 4.4: Virtual to physical address mapping. Adding 4 bit sub-page index and 4 bit page
size to each PTE

Figure 4.4 shows the translation from virtual memory address to physical page index, sub-

page index, page offset, and actual page size, using the revised page table and PTEs. The

physical page index is the index of the physical page that contains the virtual memory page.

The sub-page index gives the starting point of a virtual memory page in the physical page, and

the page size field gives the number of sub-pages that it occupies.

Figure 4.5 shows an example of a 4KB physical page as a container of multiple compressed

pages, which we call FM (Flexible Memory) pages. Of all 16 sub-pages, FM page #a takes 3

sub-pages starting from offset 0x100, #b uses 4 sub-pages starting from 0x400, and page #c

occupies 5 sub-pages from 0xb00 to the end of page. The other 4 sub-pages, marked as Free,

are unused. An FM page can not cross boundaries of page containers. In this example, three

FM pages could fit in one physical page container, saving 8KB in memory space. However,

they still need three PTEs in the page table. Their sub-page index fields are 0x1, 0x4 and 0xb,

respectively; and their size fields are 0x3, 0x4 and 0x5, respectively.
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Figure 4.5: Physical pages and sub-pages structure; this page container holds 3 FM pages: a,
b and c

4.4.4 Space Usage Efficiency Analysis

For a given set of data, in most cases FM (Flexible Memory) yields a smaller compressed

page size compared to LCP by using allocated space efficiently. For example, assume that

among the 64 blocks of a page, 16 blocks can be compressed to 8 bytes each, and 32 blocks can

be compressed to 32 bytes each, and the last 16 blocks stays uncompressed (64 Byte). LCP

would need at least (16 + 32) ∗ 32Byte + 16 ∗ 64Byte + 64Byte = 3136Byte. By comparison,

FM only needs 16 ∗ 8Byte+ 32 ∗ 32Byte+ 16 ∗ 64Byte+ 96Byte = 2272Byte. Even if we add

additional 512 Byte slack space for future possible fat write, FM can still compress this page

to a smaller size. An LCP page can be seen as a special case of a FM page where compressible

blocks have same size. The drawback of FM is its larger page header size, 96 bytes compared

to 64 bytes of LCP, which is a small difference that can be offset or usually completely hidden

by the gain from better compressed blocks in FM than in LCP.

A management granularity of eight bytes is used to roundup compressed blocks, which also

makes eight byte minimum operation granularity, in order to reduce management overhead. In

other words, the sizes of compressed blocks are rounded up to 8 ∗ n Bytes, and their offsets

are rounded up as well. Note that DDRx memory devices support write data mask for partial

update of memory block: In our design writing a compressed block, whose granularity is eight

Bytes, does not require a read before the write.

In both FM and LCP, there are spaces that can not be efficiently used. They affect the

efficiency of how memory compression schemes make use of available space. In an LCP page,
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there are a fixed number of exception slots set aside for cache-lines that do not compress

well. When a memory block is stored in exception slot, its corresponding slot in compressed

section is still reserved to keep the layout aligned. Considering the fact that a memory block

can be only in the exception section or the compressed section, there are always some space

that is reserved but not used. The size of wasted space or zombie space in each LCP page is

num total exception slot ∗ linear size. Also, since LCP rounds up all smaller blocks to same

linear size, there is roundup fragmentation.

In FM, the small slack space in a page can be hard to use; we call it fragmentation. Besides,

roundup fragmentation exist in FM because of eight-byte minimum management granularity.

A block is always allocated a space with size of multiples of eight bytes, causing certain roundup

fragmentation too. The full evaluation can be found in Section 4.6.2.

4.4.5 BMT

The BMT (Block Mapping Table) is a critical part in locating compressed memory blocks.

Some BMT fields are essential for block locating, and we call the BMT structure that only has

these fields the basic BMT. The implementation of a basic BMT is simply encoding offset and

size pair of every block and tightly packing into BMT structure, as shown in Figure 4.2.

Design overhead of BMT is basically space overhead that only exists in compressed pages.

For uncompressed pages, BMT overhead is 0 since all memory blocks follow simple ordering.

As discussed earlier, Block Size Granularity is introduced to help mitigating BMT overhead.

We will compute overhead for both basic BMT fields and advanced optional BMT fields. As a

comparison, if we design Block Size Granularity as 16 Byte, BMT size would be 80 Bytes.

Basic BMT has following fields for each block:

• Block Size: number of possible block size levels is

#BlockSizeLevles =
64Byte

BlockSizeGranularity
(4.1)

When Block Size Granularity is 8Byte, we have 8 block size levels, requiring log28 = 3

bits.
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• Block Offset: Similarly, depending on block size granularity: Number of possible block

start offsets is:

#PossibleblockOffsets =
4096Byte

BlockSizeGranularity
(4.2)

For 8-byte granularity, it requires log2512 = 9 bits. needs 1 bit.

To reduce the overhead, we specify a block size granularity and require all block offsets

and sizes must be a multiple of it. For example, with eight-byte granularity, a block starting

from byte 256 with a size of 16 is represented as offset = 256/8 = 32 and size = 16/8 = 2.

Obviously, the granularity is a critical design parameter that needs careful tuning. With a

coarse granularity, we can reduce the BMT size. However, it also means that there is more

rounding overhead. When we choose granularity of eight byte, size of BMT is only 96 Bytes,

giving overhead of BMTSize/PageSize = 96/4096 ≈ 2.3%. If larger granularity such as 16

byte is chosen, BMT of a page can fit in a 64 Byte block.

The memory controller of FM embeds a small BMT cache that caches recently used BMTs.

It has high hit rate because it resembles behavior of translation look-aside buffer, which is

known for its high hit rate, and thus the majority of memory requests only require a single

memory access.

4.4.5.1 Advanced BMT

BMT can be more than pointers to memory blocks. Here are some advanced features that

can be added to each entry of BMT:

• Free Slot Pointer: In some cases, we need to find spare space to fit a larger block than

previous one. With a basic BMT, it is necessary to traverse the whole BMT and find out

which slot is big enough. If we keep track of some slot pointers like free list in memory

management, it is much easier to find proper slots.

• Free Space Record: In order to avoid higher space overhead of Free Slot Pointer. Flexible

Memory can keep track of 1) Largest free slot available 2) Offset of largest free slot in

page 3) Total free space available in page to help in page reorganizations. We call these

three fields Free Space Record.
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Figure 4.6: BMT Cache

4.4.5.2 BMT Cache

From OS’ point of view, BMT is attached closely to each TLB entry in flexible memory

scheme, although is is actually stored in a separate structure called BMT Cache which is very

similar with TLB. TLB is usually built with CAM (Content Addressable Cache)[26], which

is fully associative cache with all blocks in a single set. One restraint of CAM is that it gets

slower when its size gets larger[42]. Therefore, we are not directly extending TLB CAM size to

accommodate BMT of each page, which is 104 Byte per page according to previous calculation.

Instead, another piece of RAM is added which follows entry updating and evicting behavior of

TLB to guarantee same hit rate as TLB and low access latency of TLB.

Typical TLB design [47] can achieve a high hit rate of 99% with only 12 TLB entries. If

chip size allows more entries, TLB can increase hit rate to 99.99%. Suppose a processor with

128-entry TLB, total BMT Cache size is #TLBEntry ∗BMTSize = 128 * 96Byte = 12KB.

4.4.6 Memory Access Handling

The page structure of Flexible Memory provides two properties, namely quick block locating

and flexible block relocating. The first property accelerates access to compressed blocks, which

is only a few cycles slower than uncompressed memory when the related BMT access hits in the

BMT cache. The second property makes Flexible Memory capable of using any slack available
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to deal with fat write with low overhead. For convenience of discussion, we will assume that

the BMT is buffered in the BMT cache at time of access. In case of BMT cache miss, a memory

access can fetch BMT to BMT cache. We assume that there is a way to distinguish compressed

page from uncompressed page (not all memory pages have to be compressed), like keeping a

compression flag in PTE.

After BMT lookup, a memory read request is completed by fetching data according to offset

provided by BMT and then decompressing the fetched data. The extra latency is BMT lookup

delay and the decompression delay. Therefore, memory read latency is only slightly increased.

Considering memory reads are on critical path of program execution, this property guarantees

system performance impact is low. Considering that memory reads are on critical path of

program execution, reducing those latency overheads is critical to program performance.

Handling memory writes can be more complicated than reads, especially in the case of fat

writes; however, write requests are usually not on the critical path of processor execution. A

write is called a fat write if the compressed block expands and the original location does not

have enough free space for the expansion. We further categorize fat writes into three types:

• Type 1: There is another large enough free slot in the same page to hold the expanded

block.

• Type 2: There is no large enough single free slot, but combined free space in the page is

enough.

• Type 3: The combined free space in page is not enough.

Type 1 fat write can be handled with virtually no extra overhead in our design. Since each

block has its offset and size stored in the BMT, such fat write is handled efficiently by write

redirection. The memory controller redirects write operation to the free slot and update the

related BMT entry in the BMT cache. The BMT cache is write-back and the BMT update in

main memory is only needed when a BMT cache entry is evicted.

Type 2 fat write is more complicated than Type 1 and triggers a page reorganization, which

results in multiple memory accesses to move around memory blocks. For example, assume there

are eight free slots in a 1 KB compressed page, each of 16 Byte. A fat write that expands a
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compressed block to 32 Bytes can be served by merging those part or all of those free slots. The

design has to be very careful as a fat write of this type may incur high performance penalty

and memory traffic. A näıve solution is complete page reorganization. When it happens in

the worst case scenario, the memory controller may issue up to 64 pairs of memory reads and

writes.

Considering that in most cases, the required size increase of the expanded block can be

satisfied by combining only a few free slots instead of all, we include a low-overhead mechanism

called smart reorganization. It tries to minimize the number of blocks moved by creating just

enough space for the expanded block, instead of combining all free slots.

If a type 3 fat write happens, a page expansion must be executed to handle it. This is man-

aged by the OS. In our simulation, we assume the overhead is on average four microseconds [37]

of OS interrupt handling plus the time required to move the memory blocks. Such expansion

can happen in-place when there is trailing free space. Otherwise it requires a page movement

to free space. A special case is that with the expansion, the compressed page will become 4KB

or larger. In this case, the whole page is uncompressed and the page table entry is updated to

mark the page as uncompressed.

4.4.7 Compression Algorithm Design

We settle down with a hybrid BDI-FPC compression algorithm which incorporates two

pattern-based compression algorithm BDI and FPC to reach higher compression ratio by com-

bining their pattern coverage while keeping compression/decompression latency low considering

that BDI and FPC both have few-cycle compression/decompression latency.

4.4.8 Compression and Decompression Engines

The compression and decompression latencies are critical to the performance of compressed

memory. As discussed earlier, the compression method is based on a combination of BDI [50]

and FPC [4] compression.

The structures of compression and decompression engines are shown in Figures 4.7 and 4.8.

Each compressor box represents compression logic of a certain pattern. In BDI, the patterns
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FPC Pattern 1 Cps FPC Pattern 6 Cps
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Compressed
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Figure 4.7: The compression engine structure. All pattern compression units work in parallel.
Uncompressed data is sent to every pattern compressor of BDI and FPC. After compressing,
all compressed data are sent to a select logic, which picks the pattern most suitable for this
batch of data. Pattern ID and compressed data are concatenated as the final output.

BDI Pattern 1
Decps

BDI Pattern 2
Decps

FPC Pattern 1
Decps

… … …

Raw
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Compressed
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Pattern
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EN_1

MUX

EN_2

EN_n

Figure 4.8: The decompression engine. All pattern decompression units work in parallel. First,
a pattern ID is extracted from green compressed data and decoded into decompression engine
enable signals EN 1, EN 2 · · ·EN n. These signals enables one of all decompression engines ,
which translates compressed data to raw data. Also the enable signal is routed to a multiplexer,
redirecting effective raw data to final output.

are B8D1, B8D1I, B4D1, B4D1I etc. For FPC, the patterns are zero-run, repeated value,

half-word sign extended etc. Same representation is used in decompression engine.

To reduce the latency of compression/decompression, every pattern of BDI and FPC has

an independent logic unit, all of which running in parallel, and whichever pattern yielding the

best compression ratio is selected. An encoding type id for the selected compression pattern

is concatenated with the data output to form the compressed data, and is padded to be a

multiple of eight bytes. At the time of decompression, the data portion is sent to the input of

all decompression units, and the encoding type id is used to select one decompression unit.

Due to the simplicity of BDI and FPC compression algorithms, the BDI compression/decompression

latency is as short as 1 clock cycle [50], and that of FPC is up to 5 clock cycles [4]. The in-
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ternals of the compression/decompression engines only comprise of addition, comparison and

MUX logics, whose size (number of gates) is linear to the input/output width, which is up to

64 bytes in our design. Compared to the complexity of modern processors, the area overhead is

very small. As for power overhead, a previous study reports that the dynamic power consump-

tions for BDI compression and decompression are 29.7 mW and 23.6 mW, respectively; and

the static power consumption is 52 µW [36]. By comparison, in our experiments the DRAM

power consumption is from 4 W to 16 W, for a memory system of four DIMMs and the selected

workloads, so the power overhead of the BDI compression/decompression is negligible. FPC

has lower implementation complexity than BDI and thus its power overhead is also negligible.

4.4.9 Traffic Reduction by Over-Fetch Cache and Merging Write Queue

A potential problem for compressed main memory is that DDR3 memory has a fixed burst

length of eight, as each data I/O pin has to transfer eight bits per column access (for a read

or write command), and the memory rank returns 64 data bytes in total. There is a DDR3

Burst Chop 4 mode that terminates the transfer after the first four bursts; however, for the

rank being accessed, the time for the following four bursts may not utilized. There are other

timing constraints and complications in using this mode, so we do not consider it in our study.

With memory compression, the size of the demanded block can be less than 64 bytes, but 64

bytes of data have to be transferred, which we call over-transferring. Without addressing this

problem, for full-rank memory, memory compression may not reduce memory traffic at all.

For read requests, we use an over-fetch cache to address the problem. It is a small cache

to store over-fetched data. A memory read request is first checked with the cache. If it is a

hit, the data from the over-fetch cache is used; otherwise, the request continues as normal. We

find that this small cache is highly effective, which is not a surprise given the spatial locality

existing in many workloads.

For write requests, the write queue of the memory controller is revised so that each entry

holds a write mask additional to write data. For write request to a compressed block of less

than 64 bytes, the write mask ensures that other part of data in the same 64-byte block will not

be overwritten. We have also revised the write queue, now called merging write queue, so that
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it can merge compressed writes to a same 64-byte block: If a latter write hits on a write queue

entry, the new data is merged into the entry and the write data mask is extended to cover the

new data. Note that the merging write queue does not reduce write traffic as effectively as the

over-fetch cache, because there is much less spatial locality in the write traffic from a normal

write-back cache.

To illustrate the difference in two methods, let’s use following example, in a full-rank mem-

ory system, block container is 64-byte wide. Two consecutive blocks (block Id 0 and 1) are

compressed to size 16 byte and 48 byte respectively. They can fit into same 64-byte block con-

tainer. When block 0 is being accessed main memory, it leaves an entry in processing requests

queue of main memory controller. Since its data has not been returned, DRAM Cache doesn’t

have its corresponding entry yet. When second request accessing block 1 arrives, memory con-

troller checks dependency of it and found that there is a previous request accessing same block

container by comparing high bits of address, memory controller can mark second request as

linked to first one. Then when first one finishes, second request also finishes. This process all

happens without DRAM Cache. However, when second request comes much later due to low

locality or processor stall, first request should have long been completed and block 1 data is

already fetched and stored in DRAM Cache. This also saves second request.

Finally, memory sub-ranking will reduce the amount of over-transferring. Memory compres-

sion and sub-ranking is a good combination for DDR3 memory. To sustain high bandwidth,

DDR3 devices has a minimum burst length of eight bits. Each DDR3 memory access returns

a 64-byte memory block1. Block-level memory compression may compress the size of a 64-byte

cache block to less than 64 bytes, but reading/writing a reduced-sized block is not efficient to

DDR3 memory. Extra data will have to be fetched to the processor. Sub-ranking will reduce

the minimum size of memory block and improve the utilization of memory bandwidth. Sub-

ranking reduces the number of devices involved in a memory access and therefore reduces the

number of bytes transferred per column access. The number is 32 and 16, respectively, for

32-bit and 16-bit sub-rank. Sub-ranking reduces the amount of data transfer for every column

1There is a burst chop mode that may cut this minimum length to 32 bytes, but using it will reduce the
throughput of the devices and the utilization of the memory bus.



www.manaraa.com

68

1 Burst Length

Active

64 Bit Rank

Figure 4.9: Full-rank traditional memory system
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Figure 4.10: Sub-rank traditional memory system

access, while the over-fetch cache reduces column accesses, so the two have overlapped gains in

read traffic reduction but still complement each other. Sub-ranking is very effective in reducing

traffic.

4.5 Experimental Methodology

4.5.1 Benchmarks

We use the SPEC CPU2006 suite [20] with the reference input data set as the benchmark

programs to construct our single-core and multi-core workloads. The benchmark programs are

categorized by their compressibility and memory access intensity. We build Flexible Memory

on top of sub-ranked scheme, more specifically 32-bit sub-rank and 16-bit sub-rank. Their

corresponding minimum transfer units are 32 bytes and 16 byte, respectively. As for compress-

ibility, we set the categorization thresholds at 50% and 75%, leading to three categories: High

(CR ≤ 50%), Medium (50% < CR ≤ 75%) and Low (CR > 75%). Here the compression ratio

(CR) is the ratio of the compressed size over the uncompressed size. The benchmarks are also

categorized by their memory access intensity. Memory intensive benchmarks (MEM) is defined

as those of MPKI > 10 while other benchmarks (MPKI ≤ 10) are classified as Instruction
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Figure 4.11: Full-rank compressed memory system
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Figure 4.12: Sub-rank compressed memory system

Level Parallelism (ILP) benchmarks which are not bottlenecked by memory access. Table 4.1

lists the benchmark classifications.

The single-core workloads are constructed by running each benchmark in single core mode.

Multi-core workloads are constructed by grouping four benchmark programs of similar property.

Fifteen memory intensive workloads are constructed, with five in each MEM-x sub-category.

Five ILP workloads are constructed. A list of these twenty workloads is shown in Table 4.2.

They are used for power evaluation as power saving is directly related to compressibility.

In order to catch different behavior phases of each benchmark, multiple sampling phases

are picked during execution of benchmark lifetime. For experiments without special setting,

by default, they are interleaved by 2B and 4B instructions for single-core and multiple-core

workloads.

4.5.2 Simulator

We use Marssx86 [44], a cycle-accurate full system x86 64 simulator. Due to nature of this

work, it is necessary to extract all memory content belonging to the running programs. However,

doing so requires running an additional program that scans the page table and communicates

with the simulator while benchmark program is running, adding an overhead that can skew
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Table 4.1: Benchmark Classification: MEM-* are memory-intensive workloads and ILP-* are
compute-intensive workloads; H, M and L refer to high, medium and low compressibility,
respectively.

Id Benchmark Class Id Benchmark Class

0 libquantum MEM-M e gcc ILP-M

1 leslie3d MEM-M f gromacs ILP-M

2 bwaves MEM-M g calculix ILP-M

3 xalancbmk MEM-M h h264ref ILP-M

4 lbm MEM-L i gamess ILP-M

5 soplex MEM-L j perlbench ILP-L

6 milc MEM-L k astar ILP-L

7 sphinx3 MEM-L l bzip2 ILP-L

8 mcf MEM-L m namd ILP-L

9 GemsFDTD MEM-H n hmmer ILP-L

a cactusADM MEM-H o povray ILP-L

b tonto ILP-M p zeusmp ILP-H

c omnetpp ILP-M q sjeng ILP-H

d gobmk ILP-M

simulation results. Thus we choose to only capture memory pages that are accessed at least

once, or in other words, active pages. Although this is not 100% coverage of pages owned by

a process, it is good enough for performance evaluation as inactive pages have little impact on

performance.

An in-house detailed model of DDR3 memory system with the Flexible Memory support is

integrated to provide DRAM statistics. All DRAM power statistics are calculated according

to the Micron power calculator [23, 24]. Other detailed simulation parameters can be found in

Table 4.3.

4.6 Evaluation

In this section, we will show experimental results regarding improvements of memory ca-

pacity, performance and power efficiency.
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Table 4.2: 4-Core workloads composition, benchmarks represented by Ids.

Workload Benchmarks Workload Benchmarks

MEM-H-1 9999 MEM-L-1 4567

MEM-H-2 aaaa MEM-L-2 4578

MEM-H-3 9aaa MEM-L-3 4678

MEM-H-4 a999 MEM-L-4 5678

MEM-H-5 aa99 MEM-L-5 4568

MEM-M-1 1230 ILP-1 bcde

MEM-M-2 1100 ILP-2 fghi

MEM-M-3 2211 ILP-3 jklm

MEM-M-4 3322 ILP-4 nopq

MEM-M-5 3300 ILP-5 pqbc

4.6.1 Memory Content Compression Ratio

We use CR to represent the compression ratio, i.e. the ratio of compressed size over uncom-

pressed size. A lower compression ratio means better compressibility. We have implemented

LCP for comparison. 27 SPEC 2006 benchmarks are tested on a single-core system. There

are 10 sampling phases, each of 200M instructions. The sampling points are separated by 2B

instruction intervals. For each simulation phase, we scan all pages that are accessed during

simulation. The same combined FPC-BDI compression algorithm is used for both FM and

LCP. In other words, the only factor that can make a difference on compression ratio is how

compressed blocks are organized in a page.

Only full-rank configuration is evaluated in this section, as sub-ranking configuration does

not have any impact on in-memory content compression ratio. All zero-pages are not included

as they are compressed in a special and very efficient way in both schemes.

Figure 4.13 shows that 22 out of 27 benchmarks get better compression ratio with FM than

LCP. As much as 31.59% relative improvement is observed. The other 5 benchmarks show only

average 5% difference between two schemes. The average compression ratios for FM and LCP

are 69% and 77%, respectively. This is equivalent to 1.5x capacity gain. Part of improvement

in compression ratio comes from allowing more levels of predefined compressed page sizes. To

analyze how much this affects the compression ratio, we have collected distribution of page

sizes. Figure 4.14 shows the number of pages that are compressed to a certain size from a
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Table 4.3: Simulated System Configuration

Processor 1-4 cores x86 64 ooo core 3.2GHz

L1 Data Cache Private, 64 Byte Block

8-way 64 KB/Core

L2 Cache (LLC) 64Byte Block

8-way, 4MB Shared

DRAM 2 Channels DDR3 800MHz

Model MT41J256M8-32M3gx8x8

Bus Frequency

tCL/tRP/tRCD

tRRD/tRC/tRAS

800 MHz

11/11/11

5/39/28

VDD/IDD0

IDD2P0/IDD2P1/IDD2N

IDD3N/IDD3P

IDD4R/IDD4W/IDD5

1.575 V/95 mA

12/37/43 mA

50/55 mA

156/145/195 mA

OS Context Switch Latency 4µs [37]

Memory Scheduling Latency 48 cycles

Cps/Decps Latency 5 cycles

BMT/MetaData Cache Size 4k entries

Over-Fetch Cache Size 4 KB

Added Slack Size Per Page 512 B

typical benchmark. Figure 4.15 shows size distribution when FM uses same set of page size

levels. We can see that FM still has compression ratio advantage over LCP. This advantage is

mainly due to the ability of having a compact layout while allowing various block sizes.

For benchmarks that favor LCP, FM loses some compression ratio because sizes of blocks

can only be a multiple of management granularity, potentially wasting some space. However,

as seen in the results, this disadvantage is small enough on average.

4.6.2 Space Utilization Analysis

In this section, we analyze the space utilization in FM and LCP. As described earlier in

Section 4.4.4, FM and LCP both have roundup fragmentation, which we denote by FFM R and

FLCP R respectively. Besides, FM may potentially create slack spaces that are too small that

is unlikely for them to be utilized. The structure of LCP determines its zombie (unusable)

space as FLCP Z = num tot available slots ∗ linear size. We collected fragmentation sizes by
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Figure 4.13: Single-core memory compression ratio. for each benchmark average compression
ratio of 10 sampling points is presented
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Figure 4.14: Page size distribution by number of pages that are compressed to each possible
size (only gcc benchmark is shown)

taking 3 sampling points from each single core benchmarks, interleaved by 1B instructions,

with length of 200M instructions per sampling point.

Figure 4.16 shows the breakdown of wasted space. The zombie/fragmentation space in FM

is defined as a slack slot whose size is smaller than the average block size of its corresponding

page. So not every piece of free space is fragmentation as they may likely be used. We can see

that most (89.3%) of wasted space from FM comes from roundup, while only 10.7% is from the

zombie space. This proves that FM is capable of efficiently utilizing allocated space. For LCP,

68.9% of wasted space is from zombie space. Overall, FM has 86% less wasted space compared

to LCP.

4.6.3 Overhead Analysis

As stated earlier, the overhead of FM scheme composes of two parts. The first is the BMT

access upon a BMT cache miss. In the simulation, most benchmarks show a BMT cache hit
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Figure 4.15: Page size distribution when applying page levels of LCP to Flexible Memory (only
gcc benchmark is shown)

0R00d

10R00d

20R00d

30R00d

40R00d

50R00d

60R00d

70R00d

80R00d

90R00d

100R00d

LCP FM LCP FM LCP FM LCP FM LCP FM LCP FM LCP FM LCP FM LCP FM LCP FM LCP FM LCP FM LCP FM LCP FM LCP FM LCP FM LCP FM LCP FM LCP FM LCP FM LCP FM LCP FM LCP FM LCP FM LCP FM LCP FM LCP FM

astar bwaves bzip2 cactus calcu gamess gcc gems gobmk groma h264 hmmer lbm leslie3d libq mcf milc namd omnet perlbe povray sjeng soplex sphinx tonto xalanc zeus

ZombieUFrag RoundUp

Figure 4.16: Wasted space of each benchmark normalized to that of LCP. RoundUp stands
for roundup error in both FM and LCP. Zombie space refers small fragmentation for FM and
Zombie space in LCP

rate over 95%, and for many benchmarks it can be as high as 99.5%. Even if a small 64-entry

BMT cache is used, the hit rate is still over 80%. This is not a surprise given that a BMT

entry covers a whole page of memory, similar to TLB design. Overflow caused by fat write is

another main reason for the performance degradation in compressed main memory scheme. The

overflow overhead comprises of two parts, namely the OS trap penalty and the data movement

penalty. The former is set to 4 µs [37].

Figure 4.17 shows the possibility for an instruction to trigger a page overflow. For FM,

page overflow includes page reorganization and page expansion. For LCP, it includes type-1

LCP overflow and type-2 LCP overflow. Any memory write handling that involves non-trivial

operation or OS interrupt operation is counted as a case of overflow. In some benchmarks,

like gamess, we didn’t observe any overflow. Therefore they do not have a bar in logarithmic

scale axis. In the figure, a longer bar signifies a lower possibility of overflow. On average, in

LCP there are about 8 overflows per ten-million instructions, while in FM there are about 5

overflows per ten-million instructions, which is 37% less. Some benchmarks such as mcf do
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Figure 4.17: Possibility of triggering page overflow per instruction by each benchmark
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Figure 4.18: Memory traffic overhead generated by fat-write handling. Data presented shows
how many bytes of extra traffic is needed across multiple simpoints

not have any overflow in FM but gives 10 overflows per ten-million instructions in LCP. In

general, a more compressed page is likely to have more overflows as there are less free space

available. However, FM is able to get both better compression ratio and lower possibility of

overflow because of its flexibility in block layout.

Since LCP and FM handle fat-write with different methods and at different cost, it is

unfair to use number of fat-writes to quantify the overhead. Instead we use bandwidth to

quantify the overhead. Figure 4.18 shows amount of extra traffic generated by FM and LCP,

respectively, to handle fat writes. For most benchmarks, both FM and LCP perform very

well with little bandwidth overhead. In some other cases, the bandwidth overhead has a

strong correlation with the frequency of heavy events in the fat write, such as page moves.

Of all benchmarks, libquantumn shows the most difference between FM and LCP. A careful

inspection of the detailed stats shows the program has very poor compressibility, thus LCP only

has few exception slots in each page, leading to a high page recompression frequency. LCP can

be designed in such a way that compression be turned off for benchmarks with high overhead

so that libquantumn could be removed from comparison. Without removing libquantumn, the
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Figure 4.19: Normalized IPC of single-core workloads. All IPCs are normalized to baseline
system that has uncompressed main memory

overall weighted bandwidth overhead of FM is only 29.3% of LCP. After removing libquantumn,

the ratio is 48.5%. In short, FM incurs significantly less overhead in handling fat writes.

4.6.4 Overall Performance

The performance gain from memory compression in DDR3 memory comes from several

sources. First, page faults are reduced because of the increase of effective memory capacity.

Second, the over-fetch effect may combine reduce the number of cache misses (because of

prefetching), and it also improves bandwidth utilization. Note that we do not include page

fault simulation in our evaluation work. Any speedup shown here are results from over-fetch

effect. In other words, on top of performance gain from page faults reduction.

Figure 4.19 shows the IPC speedup of single-core workloads. Uncompressed main memory

is used as baseline and all IPCs are normalized to it. On average, single core benchmarks show

3.5% improvement with LCP scheme and 5.5% improvement with FM. This is purely from

over-fetch effect. We also constructed 100 4-core random workloads using SPEC benchmarks.

As bandwidth is more likely to be the performance bottleneck in multi-core system and the

over-fetch effect helps reduces bandwidth pressure, the IPC speedup is expected to be more

prominent in 4-core workloads. Both LCP and FM have performance gain, reaching 5.1% and

7.5% SMT speedup, respectively.

4.6.5 Over-Fetch Cache

In this section, the performance of OFC (Over-Fetch Cache) is evaluated on single-core

benchmarks. A small 4KB is used as OFC to store additionally fetched data. When a memory
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Figure 4.20: Hit rates of OFC (Over-Fetch Cache) for each benchmark

read request reaches memory controller, OFC is checked first to see data is already in the cache.

If so, a read request can be served immediately without actual DRAM access.

Figure 4.20 shows the hit rate of OFC. The hit rate can reach as high as 43% for some

benchmarks like cactusADM. However, for benchmarks like aster and mcf, the hit rate is

virtually zero, possibly because their memory access pattern causes thrashing in the OFC. For

other benchmarks including libquantumn and milc, their hit rate is also zero because of their

poor compressibility. The average OFC hit rate is 12%.
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Figure 4.21: OFC hit rate of bwaves benchmark over when OFC size ranges from 2KB to 32KB

Intuitively, hit rate of the over-fetch cache increases with its size. Figure 4.21 shows the

OFC hit rate of bwaves benchmark when the size of OFC changes from 2KB to 32KB. As

expected, the hit rate improves from 8.85% to 20.44% when cache size increases. Using the

cacti cache simulator [32], we calculate that even if a large 32KB OFC is used, the cache only

occupies 0.36 mm2 chip area assuming 32nm fabrication technology. Therefore, OFC is effective

with low cost.
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Figure 4.22: Normalized power (full-rank Memory), normalized to full rank non-compressed
memory scheme (baseline)
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Figure 4.23: Normalized power (32-bit sub-rank Memory), normalized to 32-bit sub-ranked
non-compressed memory scheme (baseline)

4.6.6 Memory Power Evaluation

In this section, we will show how much power/energy efficiency is gained through combining

sub-ranked DRAM and compressed main memory. Power saving is mainly affected by sub-

ranking configuration and block compressibility, and these techniques/factors apply to both

FM and LCP without being affected much if at all by different page structures. Thus we only

include the FM and FM-ideal simulation. The FM-ideal mode is an ideal case of FM with no

overhead operation, thus it presents theoretical upper bound of power saving.

Figure 4.25 shows average power breakdown from all workloads. From the figure, we can

tell that the memory background power stays about the same across different sub-ranking

configurations with FM. The slight decrease of background power across different sub-ranking

configuration is caused by uneven memory requests distribution, bringing in slightly longer

power-down time. The I/O termination power is mostly decided by number of data-bus trans-

actions and their sizes. Across all configurations, we see visible saving in this part due to

reduced memory traffic. The operation power is determined by the number of micro operations
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non-compressed memory scheme (baseline)
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Figure 4.25: Memory power breakdown of multi-core workloads; y-axis is power consumption
in micro-watts

in DRAM, like precharge and activation. Whenever a request is fulfilled by the OFC or request

combining, a series of such operations can be saved, leading to considerable power savings. The

read/write burst (RW-burst) power is saved in similar manner.

Figure 4.22, 4.23 and 4.24 demonstrate power saving of all configurations. Three MEM-

M workloads give high power saving, namely MEM-M-1, MEM-M-2 and MEM-M-5. This is

because their combined compression ratios are very close to the high compressibility range

(50%). They all have considerably high OFC hit ratio (> 40%), saving the DRAM operation

power because of less memory accesses. The ILP-3 workload shows extra power consumption in

the normal FM mode, mainly due to its benchmark combination. BZip2 and perlbench happen

to be in this workload and they have extremely low compression ratio and increase memory

traffic because of fat write overhead. Of all workloads, the highest power saving is 45%. On

average, full-rank, 32-bit sub-rank and 16-bit sub-rank shows 13%, 15% and 16% power savings,

respectively, compared to the corresponding sub-ranked and non-compressed memory.
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4.7 Summary

In this paper we present a novel flexible main memory compression design. The main goal

of this work is to find a practical memory architecture that adapts to modern computing needs.

An advanced page header BMT loaded with pointers to memory blocks makes Flexible Memory

as a lightweight memory management utility. By combining advantage of low-overhead compact

memory structure, state-of-the-art compression algorithm and techniques to reduce overhead,

Flexible Memory is able to obtain an average 1.5x memory effective capacity gain. We further

studied its potential of reducing memory traffic by utilizing an Over-Fetch Cache, which also

helps achieving an average of 14% of power saving.
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CHAPTER 5. FLEXIBLE ECC IN COMPRESSED MEMORY

5.1 Introduction

As DRAM density and capacity scales, memory systems become more prone to memory

errors that could lead to system crash or data corruption [28, 40, 5, 6, 64, 41]. One of the

most effective way to detect and correct memory errors is to append ECC (Error Correction

Code) to data in memory, which requires specially designed devices with extra DRAM chips,

forming nine-device DIMM, to hold ECC parity bits. Extra chips incur higher power over-

head for keeping and accessing parity bits. For most commonly used SECDED (Single Error

Correction Double Error Detection) code, power overhead is about 12.5% of memory subsys-

tem power consumption. Performance of today’s portable computers (smart phones) is usually

constrained by their battery life. Energy and cooling cost is also one of the major concerns

in data centers. Reducing the power overhead without losing reliability protection is crucial

to improving performance of these systems. Selective Error Protection presented in Chapter 3

is a effective solution that focuses on lowering overall protection cost. In this chapter, we are

investigating in a design to lower the cost of ECC per protected unit capacity. It could be

combined with SEP perfectly.

Block-level hardware memory compression is a promising technique in increasing the effec-

tive memory capacity and bandwidth without significantly costing significant or even any extra

power [13, 48, 49]. Besides, we have designed and presented Flexible Memory in Chapter 4

that leverages advanced memory mapping structures to achieve high capacity gain and lower

compression overhead. Other than improving memory capacity, compression can also be helpful

in reducing cost of memory reliability protection schemes for several reasons. First, memory

compression provides free space to hold ECC code without having too add extra device, like
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conventional ECC DIMMs. Second, the ECC bits in freed space does not cost extra power to

keep and transfer. Therefore, it is ideal if compression and memory protection can be combined

together to provide a very low-cost ECC scheme on commodity DRAM modules.

However, combining ECC and compression is non-trivial. Compressibility of data blocks

in memory varies greatly, resulting in very different free space size. Although most blocks are

expected to free up enough space for ECC, the other

Previous works [64, 65, 59, 30, 41, 38, 8] attempt to store parity bits together with data to

avoid overhead of extra chips for ECC code. By doing so, non-ECC DIMM can have protection

without added power overhead. However, at the same time effective capacity is also reduced in

order to make room for ECC. This lowers power efficiency per unit capacity. The root reason

behind the trade-off is that ECC code space overhead is fixed no matter how or where it is

stored. Thus, in order to solve this problem completely, ECC space overhead must be lowered.

Memory compression has the potential to reduce or eliminate ECC space overhead, which then

lowers power overhead.

It has been proved that memory data has considerable compressibility [49, 48, 13]. With

simple compression algorithms like BDI [50], around 50% of capacity can be freed. The freed

up space could be used to accommodate ECC code. In ideal case, this do not incur any extra

space overhead for ECC. Therefore, there is no associated power overhead.

Some recent research works studied the possibility of having a protected and compressed

main memory system without needing to add extra device. MemZip [54] is a compressed

memory design with memory reliability in mind. It does not try to utilize memory space freed

up by memory compression at all. Instead, all these spaces are dedicated for non-traditional

purposes and holding ECC is one of them. Although MemZip only brings minimum overhead,

it does not make any promise about protection coverage. Therefore, some memory regions may

be unprotected if its data does not compress well. COP [43] cleverly leverages the fact that

multiple-bit error in a single memory block is rare. And it is safe enough to use this as a criteria

to tell compressed and protected blocks apart from incompressible blocks, thus saving storage

overhead of adding extra flags. However, in rate occasions where they are indistinguishable,

COP relies on last level cache to store such blocks and prevent them from entering main memory
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at all. Also multiple-bit error, though rare, could still happen and cause silent data corruption

in COP scheme. Frugal ECC [31] identifies that in a compressed and protected memory design,

compression algorithm should be optimized towards high protection coverage instead of good

compression ratio. Following this discovery, Frugal ECC optimized compression algorithm and

gained an improved protection ratio. However, like MemZip Frugal ECC does not provide the

ability to share extra free space to hold overflowed data, which would have to go to a reserved

compression exception region and making memory protection more costly.

In a compressed and protected memory, protection coverage is a metric about what per-

centage of memory can be protected with free space produced only by compression without

using dedicated memory space like extra chips or reserved storage to host its ECC data. A

high protection coverage signifies a lower-cost memory protection system. Improving protection

coverage is the one of the most important goals when designing a memory compression and

protection scheme.

To further improve protection coverage, we propose Flexible ECC that not only utilizes

state-of-the-art Coverage-oriented Compression algorithm, but also proposes and employees

a new Coverage-oriented block/page structure in this study, to maximize free space sharing

between different blocks and OS pages in order to ultimately make free space available for

more ECC codes.

Flexible ECC is based on Flexible Memory compression scheme for several reasons. First,

Flexible Memory scheme provides flexible memory block layout, i.e. the ability to place a

memory block anywhere in memory page and its page header BMT that can be extended for

various purposes, which all support flexible ECC code placement. We believe, this could help

making best uses of any free space that maybe unevenly distributed to different blocks within

same OS page. Second, FM provides the ability to have multiple OS pages to co-exist in same

page container and potentially allow them to share part of their free space. We believe Flexible

ECC could increase protection coverage with the help of Flexible Memory and state of the art

Coverage-oriented Compression algorithm.

Even with all optimization towards improving protection coverage, it is still possible for

some workloads to be less compressible and no space available at all for their ECC codes. It
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is not acceptable to leave these memory data unprotected. Though Selective Error Protection

also leaves part of memory unprotected, their case is completely different ours. SEP carefully

picks which part of data needs protection according to their vulnerability or significance, thus

partly protecting memory does not lead to proportional loss of reliability. However, unprotected

region in our case is caused by compressibility of their data, not their vulnerability. It is entirely

possible that some important data has poor compressibility. Therefore, Flexible ECC design

must be able to accommodate the extreme cases while keep complication low. This calls for

the use of a dedicated memory region with flexible size to hold incompressible pages in these

extreme cases.

In this study,

• We discover that other than a compression algorithm designed towards high coverage,

flexibility to combine data and free space for ECC code can also improve ECC coverage.

• We present implementation details of Flexible ECC and evaluate its protection and per-

formance.

Rest of this chapter is organized as follows: Section 5.2 gives background information about

previous compression only schemes and a few other studies that combines memory compres-

sion with protection. Section 5.3 describes ideas behind Flexible ECC design and its detailed

implementation. Section 5.5 and Section 5.4 discuss about or experimental methodology and

evaluation results, respectively. Lastly, Section 5.6 summarize this work.

5.2 Related Works

In this section, we will discuss previous works related to designing a compressed and pro-

tected memory system.

5.2.1 Memory Compression

There are several memory compression works that do not involve memory protection but

targeting to capacity gain, like, MXT (Memory Expansion Technology) [57, 1, 58], RMCS

(Robust Memory Compression Scheme) [13] and Pekhimenko et al. proposed LCP (Linearly
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Compressed Pages) [49, 48]. All these works attempt to achieve great compression ratio,

shooting for most capacity gain and minimizing performance/energy overhead associated with

their proposed scheme. However, they are not designed to support holding ECC code in their

free space.

5.2.2 Memory Compression and Protection

MemZip [54], however, abandons capacity enlargement as a design goal. Instead, it follows

same layout of conventional memory system, meaning that even if a memory block is compressed

to a smaller size, its allocated space is still 64 Byte (assuming cache-line size of 64 byte). This

avoids layout complication of compressed memory and any performance overhead caused by

it. Another merit of this design is its large amount of unused memory space, which is the gap

between actual memory block size and allocated block size. MemZip could easily hold ECC

code in these free spaces with minor modification. But, due to rigid memory layout, ECC code

has to tightly follow the word it is protection. And some larger free memory space can not be

shared between different blocks, so overall space utilization rate and protection coverage can

not be guaranteed.

COP [43] tries to compress each block and embed ECC to saved space to form a compressed

and protected block, while leaving other incompressible blocks untouched. Such a design usually

requires some dedicated flag bits to indicate whether a block is compressed or not so that when

reading it, memory controller knows whether it needs to decompress and verify ECC code or not,

otherwise it would become a write-only storage. However, COP identifies that in many cases

this flag is not needed because attempting to decompress and verify ECC code a compressed

block would usually result in multiple-bit error, which is very unlikely. Thus, COP could

accommodate both compressed and uncompressed blocks with little overhead. However, for a

small percentage of blocks that can not be distinguished in this way, COP stores them in last

level cache only and stop from being evicted into main memory. Performance of this approach

is limited by size of last level cache. Besides, COP can potentially hurt system performance

because it changes cache eviction and fetch cache behavior, which depends on compressibility

of memory data.
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Frugal ECC [31] is another scheme design to both compress and protect main memory.

It optimizes compression algorithm to improve protection coverage instead of capacity gain.

Frugal also provides different protection tiers to improve protection coverage. However, page

structure of Frugal ECC prevents space sharing just like MemZip. No block can share their

extra space to help compressing another block even if they are in close proximity.

5.2.3 Coverage-oriented Compression

Coverage-oriented Compression (CoC) is proposed in Frugal ECC [31], it is the current

state-of-the-art memory compression algorithm that considers protection coverage as a major

design goal.

CoC is composed of three major components, namely Fitting Base Delta for data with

small value range, exponent compression for floating points data and frequent word pattern

for heterogeneously-typed data. FBD is in fact a revised version of Base-Delta-Immediate

compression that has larger delta ranges to increase amount of data covered under itself at

the cost of losing some compression ratio. Floating point numbers hard to compress because

of its avalanche effect, i.e. a slight change of its value may cause many binary bits to flip.

This algorithm focuses on exponent and sign part of floating point data while gives up on

compressing others parts in order to get a larger coverage. Frequent word pattern follows

similar design principal to improve compression coverage for heterogeneously-typed data.

5.3 Flexible ECC Design

Flexible ECC is designed with coverage-centered flexibility in mind. In other word, main

goal of Flexible ECC design is to maximize protection coverage with the help of memory layout

flexibility.

Protection coverage is defined as percentage of memory that is protected by specifically

ECC codes stored in memory space freed by memory compression. Therefore, even if entire

memory is protected, protection coverage might not be 100% because some part of memory

might still be protected by a dedicated space without reduced cost. The significance is that

those memory regions in compression protection coverage incurs very low or no storage overhead
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and reduced energy overhead. Thus, increasing protection coverage is equivalent to lower cost

memory protection.

Compared to previous memory compression and protection schemes, Flexible ECC improves

protection coverage by introducing block/page level mechanisms to help incompressible data

find enough available space for their ECC from memory locations that are hard to use because

the space may not be adjacent to them. This can work on top of Coverage-oriented Compres-

sion because relying CoC alone might not be enough to always grantee high coverage. Any

compression algorithm, no matter how good it is at compressing to reduce data size can not

compress all possible data values, otherwise it would eventually compress any data value to

size zero if such compression algorithm exists and is applied to a set of data over and over to

ultimately reach zero, which is obviously unreal.Thus, there are bound to be some memory

blocks being incompressible, i.e. not having enough space to hold both its data and ECC,

which lowers protection coverage.

To illustrate the insufficiency of compression algorithm in the aspect of improving coverage,

we can think of an example like follows: Suppose 8-bit ECC is needed to protect 64-bit of data

block and a memory system contains 10 such blocks. It is possible that compression algorithm

is not able to provide 80-bit of free space for all blocks. Even in a better case where 80-bit

is generated by compression, the uneven distribution of it might cause problem. It is possible

that only two of the blocks are giving out the 80-bit space, but this space is not made available

to other eight blocks. This leads to a 20% low coverage.

Based on this observation, Flexible ECC shifts focus from compression algorithm to mem-

ory block/page management to seek improvement opportunity. We can still consider previous

example. If those two blocks are able to share their free space to the rest eight blocks, then

this memory system can reach 100% protection coverage instead of 20%. Or in other words,

a major goal of Flexible ECC is to make space available to a wider range of consumers and

give consumers more choices to store their ECC. It may seem simple to do, but most mem-

ory compression management scheme do not readily support flexibility like this. Therefore,

A well designed memory compression framework with high flexibility is needed to meet this

requirement.
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Accordingly, we consider Flexible Memory as the best choice for Flexible ECC for several

reasons: 1) Flexible Memory has the ability to provide a compact layout that makes efficient

use of available space. 2) Flexible Memory compression scheme natively supports flexible layout

of pages and blocks with high degree of freedom, it. 3) Flexible Memory is mostly insensitive

to what compression algorithm is used.

Other than memory compression management framework, Flexible ECC has two other

major components, namely compression algorithm and ECC code. To achieve best protection

coverage, Flexible ECC compress data with state-of-the-art CoC from Frugal ECC. As for ECC

code, we choose most popular SECDED to generality.

Even though the basic idea behind compressed and protected memory of applying com-

pression on data to obtain free memory space to hold ECC is simple, there are quite some

important design/implementation details unclear. In rest of this section, we will further dis-

cuss these details to make Flexible ECC a practical design..

5.3.1 Ordering of Compression and ECC Generation

In order to have a compressed and protected memory, compression operation and ECC

generation are naturally needed. However, it is not straightforward as in what order they

should be applied to data, nor is it clear whether ECC should be generated from compressed

form of data or uncompressed form or whether ECC should be compressed at all, all of which

could make non-trivial difference in both performance and reliability.

To append ECC parity code to data in a compressed memory, there are several possible

options available to do so. These options vary from each other in subtle ways. For discussion in

this section, we would use following notation to make the representation clearer. cps() stands

for compression algorithm while ECC() represents chosen ECC coding method. data stands

for input data. Then we have four options to compress and protect data.

First option is cps(data + ECC(data)), namely generating ECC code off of uncompressed

data and concatenating them together to form a regular uncompressed ECC word. At last,

compress the ECC word altogether. This is the most natural way to compress and protect,

the only difference between it and traditional protection scheme the last step of compression.
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However, for many frequency-based algorithms like Huffman encoding or value/pattern-based

compression algorithms like FPC, FPV and BDI, this method greatly decreases compressibility

of data, because ECC code is heterogeneous to type of data it is protection and likely to bring

in high entropy or irregularity. For algorithms that rely on having certain kind of pattern or

small value range to compress, such impact can sharply reduce compressibility or make the

data incompressible. Therefore, this option is not a good choice.

Second option is cps(ECC(data) + cps(data)). Which computes ECC parity code before

compression of data but append to it after compressed data. Then last step is compress

combined results. This does not hurt compressibility of data by adding ECC code like in

previous option any more. However, when ECC parity bit is compressed, it is weakened. Each

ECC parity bit is added to increase the Hamming distance between correct word and possible

erroneous word. When compressed, although the ECC bits are packed into a smaller space,

which is equivalent to having a shorter Hamming distance. Another more straightforward way

to understand it is that ECC code could suffer multi-bit error when there is actually only one

DRAM cell flip. This would ultimately hurt protection strength.

Besides, given generally poor compressibility of ECC parity bits, last compression would

not see much decrease in word size. Even in case it does compress successfully, protection is

weaker. Therefore, this option should not be considered either.

Third option can be represented as ECC(cps(data)) + cps(data). The difference between

this option and last one is that instead of applying ECC to uncompressed data, it tries to

append ECC to compressed data and then append generated parity bits to it. This method

requires compression of data only once before it is protected, maintaining the valuable data

pattern that can be utilized to improve compression. Afterwards, ECC code is generated and

stored in memory without being compressed. This option preserves both data compressibility

and ECC protection strength.
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5.3.2 Coverage-Oriented Page/Block Layout Design Principles

After determining the generation process of protected block including both data and ECC,

next design target would be finding a place to store it in main memory. Their placement is a

non-trivial design issue that could greatly affect both protection coverage and performance.

Based on flexibility in data placement provided by FM and reach satisfactory performance,

we design a page/block layout following some principles.

Space sharing with high degree of freedom should be supported. This is the reason

we choose to base Flexible ECC on FM, because of its great flexibility to place a memory block

or page anywhere it is needed and the ability to extend its header BMT for reliability usages.

This is mainly used to make space sharing easier between blocks and pages. Without this

property, it would be hard to utilize all free spaces available and result in a lower coverage.

Both data and ECC should be easily addressable. Many compressed main memory

scheme complicates data layout and makes addressing harder, FM-based Flexible ECC is no

exception. This is the side effect of having great flexibility. However, FM embeds a extensible

page header that helps make it easier to address blocks and a customized page table to help

address pages and sub-pages. Flexible ECC should take advantage of them and keep data and

ECC addressable.

Two times access to retrieve data and ECC separately should be avoided. It

is possible for data and its ECC parity bits be far away from each other in terms of memory

space. It is possible DRAM would need to issue two read commands to two different row buffer

to read both ECC and data, which could potentially double access latency. Therefore, certain

limitation and/or optimization should be included to avoid cases like this.

5.3.3 Block-level Layout

Block-level layout refers to a set of methods to manage blocks within same compressed

page. In FM, a simple BMT is embedded into each compressed page. It is essentially a

set of < offset, size > pairs acting as pointers pointing to each block, either compressed or
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uncompressed, in that page. Because it explicitly stores sizes and offsets of all blocks, each

block can be placed anywhere in the page and can have arbitrary size as needed.

Such a feature is very useful to Flexible ECC because BMT can be used to point a data

block to its ECC parity bits with some modifications. This gives a data block more options

regarding where to store its ECC bits, which translates to high protection coverage.

Therefore, we enhance BMT to FECC-BMT that supports more advanced features related

to improving protection coverage, like Easy Block Exception Handling and Block Space Sharing

(More details will be given later).

A memory block in Flexible ECC be one of the following four types based on their com-

pressibility and ECC code status:

• Compressible. A block that is compressible enough to hold at least its own ECC code

and not sharing its space to other blocks.

• Space Borrower. A block that is not compressible enough thus is borrowing space from

another block to hold its ECC code.

• Space Lender. A block that is very compressible such that is is able to lend its own space

to other blocks.

• Easy Exception Block. A block that is not compressible and not able to find another

memory block that has extra space.

Examples of these four blocks types are presented in Figure 5.2.

Figure 5.1 shows the structure of an FECC-BMT entry, all of its ECC flag value and

correspondence to above four block types. Compared to original BMT, FECC-BMT adds two

fields named ECC Flag and ECC Block ID. Note that ECC Block ID is different from its own

Block ID, which is not explicitly stored in BMT. Combining ECC Flag and ECC Block ID,

FECC-BMT could support space sharing between blocks within same page.

In the case of Compressible Block, as first block in Figure 5.2, ECC Flag are set to be

’00’, indicating that its ECC code are stored right after its data. ECC Block ID is not used in
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Figure 5.1: Structure of Enhanced BMT in Flexible ECC, and four examples of its use case with
different ECC flag values.

this scenario. To find its ECC code, controller only needs to read out its trailing data without

extra addressing overhead.

Another type of memory block is called Space Borrower. It is the second block example

in Figure 5.2. A Space Borrower block does not have great compressibility that has to borrow

space from another block in order to be covered by ECC protection. ECC Flag for a Space

Borrower is set to ’01’ to show its status. ECC Block ID is used indicate which block is

providing needed space for it. When memory controller reads a Space Borrower, it can find its

ECC code using ECC Block ID.

Space Lender is actually the pairing part of a space borrower. It provides the space needed

by Space Borrower. A space lender is very compressible such that compressing it frees up

more space than its own EC need. So it could help another block by sharing that extra space

and become a Space Lender. Its ECC Flag bits are set to ’10’ and ECC Block ID is pointing to

its borrower. The reason we need to include ECC Block ID is because when fat-write happens

to lender, its may lose its ability to share space any more. Thus, its borrower must be found and

notified in order to find another lender to hold its ECC. Otherwise, error protection capability

or even data would be lost.

Another type of block are called Easy Exception Blocks. Because Flexible ECC is based

on FM, which allows free space be placed almost anywhere in the page. These free spaces



www.manaraa.com

93

Figure 5.2: Examples of four types of blocks.

may be too small for entire memory blocks, but they act as buffer area for block expansions

or reorganizations in FM. In Flexible ECC, we can make use of them by storing ECC code in

them. They are especially useful in those cases where a block is incompressible and no other

block is allocated enough space to share. An incompressible can then pick its nearest free

space, even though it does not belong to any other block, and claim it as its dedicated ECC

block. Nearer space is preferred because they are more likely to be stored in same DRAM page

and can be accessible without having bank conflict. In previous works, such a block with no

compressibility at all has no choice but be stored in exception region with high overhead, while

Flexible ECC can handle cases like this easily with little or no overhead when there is any free

space in same page. Therefore, we call blocks like this Easy Exception Blocks.

Easy Exception Blocks are indicated by ECC Flag value of ’11’. Unlike other types of

blocks, EEB does not need size field any more because its size is always 64 Byte, otherwise, it

would not be incompressible. And 3-bit size field is then combined with 6-bit ECC Block ID

to form a 9-bit ECC Offset field, which is enough to indicate any sub-block in same page. In

the example shown in Figure 5.2, ECC of block #3 is placed in sub-block 0x1d8 indicated by

ECC Offset field.

In a word, thanks to high degree of flexibility inherited from FM and appropriate support

from FECC-BMT, Blocks within same page can freely share space with each other in order

to improve overall coverage. Any small chunk of free space can also be fully utilized to cover
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incompressible pages with very low cost. In other word, as long as there However, this is based

on the presumption that their owner page could provide enough free space. Or in other word,

if a page is not compressible enough, block-level coverage optimization within that page would

not be able to help because of page size hard limit.

5.3.4 Page-level Layout

Given that block-level optimization efficiently utilizes available space within a page to effec-

tively improve protection coverage, and this is based on the presumption that OS page could

provide enough space. It is important to have page-level layout optimization too, which can

work together with block-level layout optimization towards achieving higher coverage.

Therefore, we design a page-level structure such that pages with limited available space can

utilize space from its peers efficiently to gain needed space.

Following the design of FM, Flexible ECC also manage pages in page container. FM requires

a page to be stored only within one page container to avoid excessive bank conflicts when reading

a page. However, this rule is in fact too tight when protection coverage is primary design goal

instead of performance. In many cases, we could alter the design a little bit to allow a page go

across page container boundary so that a less compressible page and a more compressible page

could be paired together and share space.

Pairing two pages that are in same page container is trivial and usually unnecessary. Because

if more than one pages are stored in a single page container, that means both of them are already

compressed to smaller sizes. In order to find free space in either one of the page only requires

a page expansion. Even in some cases, like one page is in a bad position that page expansion

could cause undesired overhead, an extra page table can be added to indicate that certain

sub-page is dedicated to hold overflow data and ECC with structure.

Therefore, we focus our discussion on inter page container page pairing, which includes pages

that do not compress well. We try to find the best layout that can pair two pages together so

that they can share free space to improve coverage while minimizing access overhead.

Figure 5.3 shows a layout to efficiently utilized extra space from one page to compensate

for lack of space in another page, we call it page pairing. As its name suggests, it pairs two
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Figure 5.3: Page pairing in one super page container and their page table entries.

pages together and assign a 8KB super page container to them instead of 4KB regular page

containers. One of these two pages should start from beginning of super page container whereas

the other page should start from the end of it and grow reversely as we see in Figure 5.3 that

both first and second page grow into the mutual buffer.

The page in reverse order would be structured slightly different from other pages in its

BMT address and block offset calculation. Such a small difference should not cause a notable

difference in performance or coverage.

There are several benefits of page pairing structure. The most important one is its better

usage of free space for the page with less compressibility because mutual buffer area is always

set in middle of the super page container and each page could claim or release part of it to gain

or lose free space. Besides, the convergence-style layout keeps most part of each page within

either upper of lower half 4 KB area, which is aligned with DRAM row size. This helps reduce

bank conflicts.

Obviously, in order to support a page-pairing structure like this, page table must be re-

vised. Traditionally when two virtual pages are mapped to same physical page, it is generally

because of shared memory. However, page-pairing structure map two virtual pages to different

parts instead of sharing same memory region. Therefore, some modification to OS memory

management logic is necessary. Besides, two additional flags are needed. These flags include

a Super-Page-Container flag to show if this page is mapped to an double size (8 KB) page
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container, instead of regular (4 KB) container. Another flag (Reversed Page flag) is needed to

show which of the two pages are placed at the end of page container with reversed ordering.

After enabling page-level space sharing through supporting page-pairing structure, a page

with insufficient space can utilize space from another page if such a page with sufficient space

exists. Even if OS could not find an appropriate pairing page at the moment, it could pre-

allocate an super page container for it and wait for compressible page to appear. However,

number of such pages should be strictly controlled otherwise a program with less compressible

data set could take up twice as much memory as it should have needed.

After combining block-level and page-level structure optimization, space sharing is greatly

improved. A block can utilize any space available in its page and a page is allowed to make use

of extra space from other pages. We believe this can help improve protection coverage.

5.3.5 Exception Memory Region

Though page-pairing layout helps improve protection coverage, it still can not guarantee a

100% coverage even combined with block-level optimization discussed before. This is because

compressibility and memory capacity poses a hard limit, which can not be overcome with

enabling space sharing. As long as this hard limit exists, there is always the possibility that

some data can not hold its own ECC data either for poor compressibility or simply lack of

available memory capacity. In this case, incompressible page should be accommodated in a

dedicated area in memory space together with its ECC in order to keep memory space 100%

covered.

However, setting up an Exception Memory Region involves complications too, like how

to minimize storage consumption and performance overhead. In fact, there are two major

problems in this issue.

First is address mapping in EMR. Unlike other parts of memory where memory blocks are

either addressed by FECC-BMT with explicit pointers or by implicit binary decomposition

mapping, Memory blocks and their ECCs together form none-power-of-two 72-byte blocks and

this causes trouble in address mapping. Since their sizes do not vary block by block, nor do they

need out-of-order block placement, it is a waste of space to have FECC-BMT included in each
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page. For OS and user-level applications, the existence of ECC code should be transparent,

which makes address mapping even more difficult. Luckily, Segmented-BCRM memory system

design for Selective Error Protection introduced in Chapter 3 would be a perfect solution for

this problem only with some minor modifications.

Second problem is about sizing of EMR. On one hand, a small EMR may result in excessive

re-sizing that could involve large chunks of data movement, causing high latency in some mem-

ory operations. One the other hand, a large EMR could waste memory space. We therefore,

implement EMR in a balloon fashion that blows up gradually when a simple prediction shows

that in the near future more space is needed and shrinks down when it is predicted that less

space would be needed. The prediction is based on EMR utilization and delta of page numbers

in EMR in unit time.

However, in the case of failing to increase size of EMR due to memory capacity or utilization

issues, some pages would have to be evicted from physical memory space into hard disks as a

last resort. In the future, if it becomes needed, Virtual Memory would pick another least used

page and replace it with requested page.

5.4 Experimental Methodology

5.4.1 Benchmarks and Workloads

We construct single-core workloads with the SPEC CPU2006 suite [20] running with the

reference input data set. Only single-core workloads are constructed because compressibility

and protection coverage does not change according to number of cores or number or programs

running simultaneously.

During simulation, all workloads are fast-forwarded to skip initialization period as well as

a 500M instruction warm-up period. Semaphores are inserted to make sure simulations are

deterministic regarding starting point.
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Table 5.1: Simulated System Configuration

Processor 1 core x86 64 ooo core 3.2GHz

L1 Data Cache Private, 64 Byte Block

8-way 64 KB/Core

L2 Cache (LLC) 64Byte Block

8-way, 4MB Shared

DRAM 2 Channels DDR3 800MHz

Model MT41J256M8-32M3gx8x8

Bus Frequency

tCL/tRP/tRCD

tRRD/tRC/tRAS

800 MHz

11/11/11

5/39/28

VDD/IDD0

IDD2P0/IDD2P1/IDD2N

IDD3N/IDD3P

IDD4R/IDD4W/IDD5

1.575 V/95 mA

12/37/43 mA

50/55 mA

156/145/195 mA

Cps/Decps Latency 5 cycles

ECC Code (72, 64) SECDED

Memory Sub-Ranking 32-bit sub-ranks

Simulation point length 100M Inst

5.4.2 Simulator and Configuration

Our simulator is based on Marssx86 [44], a cycle-accurate full system x86 64 simulator.

We also integrated modules to Flexible Memory and Flexible ECC. CoC (Coverage-oriented

Compression) algorithm is implemented according to descriptions of it in Frugal ECC [31].

This way, Flexible ECC and Frugal ECC can be compared fairly such that only memory

organization instead of difference in compression algorithm would make a impact on protection

coverage. Besides, An in-house detailed model of DDR3 memory system is integrated to provide

DRAM statistics. All DRAM power statistics are calculated according to the Micron power

calculator [23, 24]. Other detailed simulation parameters can be found in Table 5.1.
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Figure 5.4: Distribution of compression exception handling in Flexible ECC. Block (blue bar) is ex-
ception handled by block-level methods; similarly, page means page-level methods; the rest are hard
exceptions that are higher cost and need dedicated memory region.

5.5 Evaluation

5.5.1 Compression Exceptions

Compression exceptions are enemies to efficiency of memory compression and protection

scheme. Each compression exception means extra resources including storage space and energy

budget must be spent to cover the exception.

Frugal ECC relies on CoC to reduce number compression exceptions while Flexible ECC

also has structural flexibility on top of CoC to reduce exceptions. Figure 5.4 shows the how

compression exceptions are handled in Flexible ECC.

In this figure, we can clearly see that block-level handling, including block space sharing

and easy exception (separate ECC block) takes care of most exceptions. On average, around

95.3% of them are handled by them. Out of the rest exceptions, 4.6% are handled by page-

level methods, specifically page pairing with super page container. Overall less 0.01% of all

exceptions are costly exceptions involving using reserved memory region and possibly cause two

times error. On contrary, if Frugal ECC provides same level of protection (without considering

half compression protection), all of these exceptions would be categorized as hard or costly

exceptions.

We can see that by introducing another layer of memory management that helps evening

compressibility and free space, cost of memory compression and protection can be reduced by

a large margin with Flexible ECC.
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Figure 5.5: IPC of all workloads normalized to that of Frugal ECC.

5.5.2 Performance

Performance improvement is tightly coupled with the reduction of compression exceptions.

Frugal ECC places overflow data from compression exception to a dedicated region, and ac-

cessing this region may cause an extra memory access than usual and second (extra) access

might incur bank conflict which would bring in more latency. This latency can be anywhere

between tens of nanoseconds to over a hundred nanoseconds.

Flexible ECC, however, provides multiple lower cost ways to handle compression exception

and related overflow data. And we have seen in Section 5.5.1 majority of them can be handled

by page or block-level flexible layout without causing significant overhead.

Figure 5.5 presents the performance of Flexible ECC in terms of IPC when normalized to

Frugal ECC as baseline. IPC improvement varies from 0.04% to 7.51% depending on workloads

compressibility and memory intensity. On average, this is a 1.67% IPC speedup. The source of

speedup is from saving unnecessary memory operations, thus shortening memory access latency.

5.6 Summary

We believe that compression is a perfect match with ECC-based memory protection because

it creates usable space out of crowded memory space to hold ECC codes with minimal or

sometimes no cost. However, combining them is non-trivial because compression targets for

high capacity while memory protection aims to provide high protection coverage with little

focus on capacity. Therefore, we study the possibility of designing a Flexible ECC scheme

based on Flexible Memory, which provides high degree of freedom to customize both layout of
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blocks within an OS page and layout of pages in entire memory space. Such flexibility provides

the ability to adjust memory layout to enable space sharing at many different levels so that

Flexible ECC could make the most use out of freed space to improve protection coverage. Our

experiments show that Flexible ECC greatly reduces high cost compression exceptions than

previous state-of-the-art, this overall makes memory compression and protection schemes more

practical and efficient.
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CHAPTER 6. CONCLUSION AND FUTURE WORK

Large-scale computers and clouds based on them have become a much more important part

in computing systems. Many computing tasks have been migrated from individual devices to

large-scale computers located in dedicated data centers. There are many reasons behind this

paradigm shift. Out of them, easier management high power-efficiency, strong reliability and

availability are most dominating reasons. However, when large-scale computers keep scaling

up by including more nodes, it has become challenging to maintain these properties. Memory

system, as a crucial part to many computing systems, is also facing these challenges.

We first present an efficient memory SEP mechanism to support a memory SEP system

using commodity memory modules and devices. It partitions the whole set of DRAM rows into

two regions, a non-protected region and an ECC protected region. A new address mapping

scheme called parameterized BCRM is proposed to map physical memory address into DRAM

device address components, and two efficient logic designs are presented. With this support,

the OS may dynamically adjust the sizes of the ECC protected region and the non-protected

region according to application demands. Our evaluation shows that the design incurs negligible

performance overhead and improves memory energy efficiency.

We then present Flexible Memory, a novel flexible main memory compression design. The

main goal of this work is to find a practical memory architecture that adapts to modern

computing needs. An advanced page header BMT loaded with pointers to memory blocks makes

Flexible Memory as a lightweight memory management utility. By combining advantage of low-

overhead compact memory structure, state-of-the-art compression algorithm and techniques to

reduce overhead, Flexible Memory is able to obtain an average 1.5x memory effective capacity

gain. We further studied its potential of reducing memory traffic by utilizing an Over-Fetch

Cache, which also helps achieving an average of 14% of power saving.
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To further reduce storage and energy cost of memory protection, we designed Flexible ECC

that makes full use of available spaces in memory to hold ECC code for other blocks even though

the space is not adjacent to blocks. This provides an extra layer of system design that can

help improve protection coverage, which directly translates to lower cost of memory protection.

Flexible ECC is insensitive to compression algorithm choice or ECC code choice, and thus is

able to work with some priori compression and protection schemes. Our experiments show that

Flexible ECC provides highest known protection coverage ratio when compared with previous

state-of-the-art.

In summary, we propose three memory designs aiming to improve memory capacity, band-

width and reliability while keeping power cost low. They can be applied on a wide range of

computer systems. For small-scale systems like personal hand-held smart phones or tablets

that do not have the luxury to include large memory capacity or strong memory protection

because of hardware cost and battery lifetime concern, all three proposed schemes can help

improve in both realms. For larger-scale computers including personal computers and desktop

workstations, their growing concern over memory reliability can be resolved by implementing

either SEP or Flexible ECC, that provides low-cost ECC protection on commodity devices.

For extremely large-scale computers in data centers, Flexible Memory can be used to improve

performance of their memory system by giving low-cost capacity enlargement, higher band-

width resource and great energy efficiency. SEP and Flexible ECC can also be applied on them

to potentially strengthen reliability by using stronger ECC code and reduce reliability-related

energy cost. Overall, various types of computing systems could all benefit from these schemes

to have larger memory capacity, higher effective bandwidth and become more reliable at very

low cost.

In the future, we would like to extend our research topics to memory systems beyond DRAM

to newer memory technologies especially Non-Volatile Memory. They are considered promising

candidates to replace DRAM technology. However, they are at early stage of development and

still troubled by problems like limited write endurance, long access latency and high energy

cost per operation. We see an opportunity to have more sophisticated memory system design

to have an impact in this area and potentially make new technologies more practical and useful.
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